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Abstract

This paper introduces a novel regularization technique known as the Contraction Ridge estimator
(CRidge), designed to address the limitations of traditional Least Squares (LS) and other bi-
ased estimation methods such as Ridge, Liu, Kibria-Lukman (KL), and Contraction Least Squares
(COLS) estimators, particularly in the presence of multicollinearity. The proposed estimator modi-
fies the COLS by integrating ridge regression, enhancing its numerical stability and performance in
high-dimensional and highly collinear settings. Theoretical comparisons are presented, establishing
conditions under which CRidge outperforms other estimators based on Mean Squared Error Matrix
(MSEM) and Scalar Mean Squared Error (SMSE) criteria. A comprehensive Monte Carlo simula-
tion study further validates the theoretical findings, demonstrating the superiority of CRidge over
LS, Ridge, Liu, KL and COLS estimators across various scenarios, including different levels of multi-
collinearity, sample sizes, and noise levels. In addition, an empirical application using the electricity
data illustrates the practical utility of the CRidge estimator. The results show that CRidge consis-
tently achieves lower SMSE, Prediction Mean Squared Error (PMSE) and Prediction Mean Absolute
Error (PMAE) compared to other methods, indicating its robustness and effectiveness for regression
analysis under multicollinearity. The contraction ridge estimator is recommended as a reliable and
efficient tool to improve estimation accuracy and prediction stability in complex regression problems.

Keywords: Contraction Ridge Estimator; Ridge regression; Multicollinearity; Regularization Techniques;
Prediction Accuracy.

1 Introduction

Linear regression model estimation is a fundamental area in statistics, extensively studied due to its
applicability in various scientific fields. The standard Linear Regression Model (LRM) is commonly used
to express a response variable as a function of multiple predictors, and the model parameters are generally
estimated using the Least Squares (LS) method. However, this method is known for its limitations
when predictors are highly correlated (multicollinearity), making the predictor matrix singular or nearly
singular, thus producing unstable estimates with high variance [8].

The increasing complexity of modern data analysis has motivated the development of various estima-
tion techniques aimed at enhancing robustness and accuracy in regression modeling. In particular, when
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dealing with high-dimensional data or datasets with strong multicollinearity, traditional methods such as
Least Squares (LS) often fail to produce reliable estimates. This inadequacy has prompted researchers to
explore alternative methods that incorporate regularization techniques to stabilize the estimation process
and reduce the adverse effects of multicollinearity.

Moreover, the development of efficient estimators has become a prominent area of research, especially
in fields where predictive accuracy and stability are essential. For example, in economics, environmental
modeling, and biomedical research, multicollinearity is mostly inevitable due to the inherent relation-
ships among explanatory variables. Addressing this challenge requires estimators that not only minimize
prediction error but also maintain consistency under varying levels of multicollinearity. Recent advances,
such as the Kibria-Lukman estimator [13] and other shrinkage-based methods, have shown the potential
to improve estimation performance; however, there is still room for improvement.

Ridge regression, introduced by Hoerl and Kennard [8], is one of the most popular shrinkage-based
methods. It involves adding a penalty term to the Gram matrix of the classical LS method to reduce
instability caused by multicollinearity. However, this technique presents drawbacks related to the selection
of the regularization parameter, as noted by Liu [15]. To address this issue, Liu [15] proposed the Liu
estimator, which aims to improve the performance of ridge regression by appropriately adjusting this
parameter.

More recently, [13] developed a new regularization technique called the Kibria-Lukman (KL) esti-
mator. This estimator is based on the modification of the ridge estimator to enhance its robustness
in multicollinearity. However, the improvement provided by this technique remains limited in certain
situations, which justifies the search for alternative approaches.

A potential alternative is the contraction least squares (COLS) estimator, introduced by [22]. Al-
though this concept has been mentioned in the literature, it has received relatively limited attention
compared to the ridge estimator. In this paper, we propose a modified version of the contraction estima-
tor, called the Contraction Ridge estimator (CRidge), which combines the characteristics of Ridge and
Contraction estimators to improve numerical stability and estimation performance when multicollinearity
is present.

The main objective of this paper is to evaluate the theoretical properties of the Contraction Ridge
estimator and compare it to other existing estimators, including the least squares estimator, the Ridge
estimator, the Liu estimator, the Kibria-Lukman estimator, and the classical contraction estimator. To
achieve this, we used an approach based on the Mean Squared Error Matrix (MSEM) and the Scalar
Mean Squared Error (SMSE) to compare the performance of these estimators.

The following sections of this paper are organized as follows: Section 2 presents the linear regression
methods and model estimation, as well as the biased estimators proposed in the literature. Section 3
focuses on the theoretical comparison between the different estimators. Section 4 presents the simulation
methodology and the results obtained. Section 5 provides an illustrative application based on a real
dataset. As in other studies, the discussion and conclusions are provided at the end of this paper.

2 Linear regression and model estimation

The linear regression model (LRM) expresses a single response variable as a linear function of predictors.
The general LRM is given by:

y = θ0 + θ1z1 + · · ·+ θqzq + ε. (1)

where y is the response variable, z are the predictors, θ0, θ1, . . . , θq are the unknown regression parameters,
and ε are the random error terms. In matrix notation, the model becomes:

y1
y2
...
yn

 =


1 z11 z12 · · · z1r
1 z21 z22 · · · z2r
...

...
...

. . .
...

1 zn1 zn2 · · · znr



θ0
θ1
...
θq

+


ε1
ε2
...
εn


Consequently,

y(n×1) = Z(n×(q+1))θ((q+1)×1) + ε(n×1). (2)

such that E(ε) = 0, Cov(ε) = σ2I and Cov(εj , εk) = 0, j ̸= k.
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The regression parameters in equation (2) are estimated using the least squares (LS) method. The
method minimizes the error sum of squares. LS is defined as follows:

θ̂LS = (Z⊤Z)−1Z⊤y (3)

Model (1) can be written in canonical form as follows:

y = Xν + ε, (4)

where X = ZH, ν = H ′θ, and H is the orthogonal matrix whose columns constitute the eigenvectors of
Z ′Z. Then

X ′X = H ′Z ′ZH = E = diag(e1, . . . , eq),

where e1 ≥ e2 ≥ · · · ≥ eq > 0 are the ordered eigenvalues of Z ′Z. Hence, (3) is canonically represented as:

ˆνLS = E−1X ′y (5)

The properties of the estimator considered in this study are evaluated using the mean squared error
matrix (MSEM) and the scalar mean squared error (SMSE). MSEM of an estimator τ̃ is defined as

MSEM(τ̃) = V (τ̃) + Bias(τ̃)Bias(τ̃)′, (6)

where V (τ̃) is the variance-covariance matrix and Bias(τ̃) = E(τ̃) − τ is the bias vector. The SMSE is
the trace of the MSEM, defined by:

SMSE(τ̃) = tr(V (τ̃)) + Bias(τ̃)′Bias(τ̃). (7)

Based on the canonical transformation, the following relationships hold:

ν̃ = H ′θ̃, SMSE(ν̃) = MSE(θ̃) and MSEM(ν̃) = H ′MSEM(θ̃)H. (8)

where ν̃ can be any estimators considered in this study. Hence, the MSEM and SMSE for νLS are given
by:

MSEM(ν̂LS) = σ̂2E−1 (9)

SMSE(ν̂LS) = σ̂2

q∑
j=1

1

λj
, (10)

where

σ̂2 =

∑n
i=1(yi − ŷi)

2

n− p
.

2.1 Biased Estimators

Studies have revealed the limitation of LS when there are linear relationships among the predictors
(multicollinearity). For example, when the predictors have perfect multicollinearity, the Gram matrix
Z⊤Z becomes non-invertible. Regularization techniques such as ridge regression are the potential alter-
natives. [8] developed ridge regression by incorporating a penalty into the Z⊤Z matrix in (3) to reduce
the influence of multicollinearity. The ridge estimator of ν is given by

ν̂k = E−1
k EνLS (11)

where E−1
k = (E + kI)−1 k is the regularization parameter. [9] defined the regularization parameter as

follows:

k =
pσ2∑q
j=1 v

2
j

(12)

The MSEM and SMSE for ν̂k are defined as follows:
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MMSE(ν̂k) = σ̂2E−1
k EE−1

k + k2E−1
k νLSν

′

LSE
−1
k (13)

SMSE(ν̂k) = σ̂2

q∑
j=1

ej
(ej + k)2

+ k2
q∑

j=1

ν2j
(ej + k)2

(14)

Liu [15] argued that the ridge estimator has a drawback associated with its regularization parameter.
To address this issue, [15] proposed the Liu estimator, which is defined as follows:

ν̂d = E−1
d Ed+ν̂LS , 0 ≤ d < 1 (15)

where E−1
d = (E+ I)−1 and Ed+ = (E+ dI). Hence, MSEM and SMSE for ν̂d are defined as follows:

MSEM(ν̂d) = σ̂2E−1
d Ed+E

−1Ed+E
−1
d + (d− 1)2E−1

d νLSν
′
LSE

−1
d (16)

SMSE(ν̂d) = σ̂2

q∑
j=1

(ej + d)2

(ej + 1)2ej
+ (d− 1)2

q∑
j=1

ν2j
(ej + 1)2

(17)

Kibria and Lukman [13] recently developed another regularization technique called the Kibria-
Lukman estimator. The estimator is defined as follows:

ν̂KL = E−1
k Eaν̂LS , (18)

where Ea = (E − kI). Hence, MSEM and SMSE for ν̂KL are defined as follows:

MSEM(ν̂KL) = σ̂2E−1
k EaE

−1EaE
−1
k + 4k2E−1

k νLSν
′
LSE

−1
k (19)

SMSE(ν̂KL) = σ̂2

q∑
j=1

(ej − k)2

(ej + k)2ej
+ 4k2

q∑
j=1

ν2j
(ej + k)2

(20)

2.2 Contraction Ridge Estimator

Mayer and Willke [22] introduced the contraction estimator as an alternative to the widely studied ridge
estimator. However, despite its potential, the contraction estimator has received limited attention in the
literature. In this study, we propose a modified version of the contraction estimator and investigate its
theoretical properties. According to Özkale and Kaciranlar [24], the simplified form of the contraction
estimator is as follows:

ν̂c = (1 + ρ)−1ν̂LS , ρ > 0

This formulation effectively shrinks each component of the LS method by a factor of (1+ρ)−1, offering
a regularization approach similar to ridge regression. For computational convenience, we redefine ρ as
k and determine its value using the ridge parameter of (12). Consequently, the contraction estimator is
given by

ν̂c = (1 + k)−1ν̂LS , k > 0 (21)

Notably, as k → 0, the contraction estimator converges to the LS method:

lim
k→0

ν̂c = ν̂LS

The MSEM of ν̂c is as follows:

MSEM(vc) = σ̂2(1 + k)−2E−1 + k2(1 + k)−2vv′ (22)

SMSE(vc) =
σ̂2

(1 + k)2

q∑
j=1

1

ej
+

k2

(1 + k)2

q∑
j=1

ν2j (23)

Since the contraction estimator exhibits similar behaviour to ridge regression, we propose a modification
to enhance its applicability, particularly in multicollinearity. The original contraction estimator is a
function of the LS estimator, which becomes unstable or noninvertible under perfect multicollinearity. To
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address this limitation, we replace the LS estimator with the ridge estimator, leading to the contraction
ridge estimator:

ν̂ck = (1 + k)−1ν̂k, k > 0 (24)

This modification ensures numerical stability and improves the estimator performance in highly collinear
or high-dimensional settings. The properties of the contraction ridge estimator are defined as follows:
Bias of vck is given as:

Bias(vck) = (1 + k)−1E−1
k Av

where A = (E − (1 + k)Ek). The variance is given as:

V (vck) = σ2(1 + k)−2E−1
k EE−1

k

Hence, MSEM is defined as

MSEM(vck) = σ̂2(1 + k)−2E−1
k EE−1

k + (1 + k)−2E−1
k Avv′AE−1

k (25)

Consequently, the SMSE is as follows:

SMSE(vck) =
σ̂2

(1 + k)2

q∑
j=1

ej
(ej + k)2

+
k2

(1 + k)2

q∑
j=1

(1 + ej + k)2ν2j
(ej + k)2

(26)

3 Theoretical Comparison

In this section, we compare the performance of the existing methods with the proposed method.
Lemma 1. (Farebrother [10]). Let F be a positive definite matrix, namely F > 0, and let ν be some
vector, then

F − νν′ ≥ 0 if and only if ν′F−1ν ≤ 1.

Lemma 2. (Trenkler and Toutenburg [25] ). Let θ̂j = Cjy, j = 1, 2 be two competing estimators for θ.

Suppose that V = V(θ̂1) − V(θ̂2) > 0, where V(θ̂j), j = 1, 2 denotes the variance-covariance matrix of

θ̂j. Then

∆(θ̂1, θ̂2) = MSEM(θ̂1)−MSEM(θ̂2) ≥ 0

if and only if
m′

2(V +m1m
′
1)

−1m2 ≤ 1,

where MSEM(θ̂j) and mj denote the mean squared error matrix and bias vector of θ̂j, respectively.

3.1 ν̂LS and ν̂ck

We examined the difference between the MSEM of the LS method and the contraction ridge estimator
as follows:

MSEM(ν̂LS)−MSEM(ν̂ck) = σ2(E−1 − (1 + k)−2E−1
k EE−1

k )− (1 + k)−2(E−1
k AνLSν

′

LSA
′
E−1

k ). (27)

Given that k > 0, we have the following theorem.
Theorem 1. Given two linear estimators ν̂LS and ν̂ck. If k > 0, ν̂ck dominates ν̂LS given that
MSEM(ν̂LS)−MSEM(ν̂ck) > 0 if and only if

σ−2ν′LSA
′
[(1 + k)2EkEEk − E]−1AνLS ≤ 1.

Proof. Using the SMSE for both estimators in (10) and (26), we obtain

V (ν̂LS)− V (ν̂ck) = σ2(E−1 − (1 + k)−2E−1
k EE−1

k )

= σ2diag

{
1

ej
− ej

(1 + k)2(ej + k)2

}q

j=1

.

5



The variance-covariance difference E−1−(1+k)−2E−1
k EE−1

k will be positive definite (pd) if and only
if

(1 + k)2(ej + k)2 − e2j > 0 or (1 + k)(ej + k)− ej > 0.

For k > 0, we can certainly see that (1 + k)(ej + k)− ej > 0. Therefore, E−1 − (1 + k)2E−1
k EE−1

k is
pd. The proof is completed by Lemma 2.

3.2 ν̂k and ν̂ck

We examined the difference between the MSEM of the Ridge and the contraction ridge estimator as
follows:

MSEM(ν̂k)−MSEM(ν̂ck) =σ2(E−1
k EE−1

k − (1 + k)−2E−1
k EE−1

k ) + k2E−1
k νLSν

′

LSE
−1
k (28)

− (1 + k)−2(E−1
k AνLSν

′

LSA
′
E−1

k ).

Given that k > 0, we have the following theorem.
Theorem 2. Given two linear estimators ν̂k and ν̂ck. If k > 0, ν̂ck dominates ν̂k given that MSEM(ν̂k)−
MSEM(ν̂ck) > 0 if and only if

σ−2ν′LSA
′
[(1 + k)2E − E + σ−2k2(1 + k)2νLSνLS ]AνLS ≤ 1.

Proof. Using the SMSE for both estimators in (14) and (26), we obtain

V (ν̂k)− V (ν̂ck) = σ2(E−1
k EE−1

k − (1 + k)−2E−1
k EE−1

k )

= σ2diag

{
ej

(ej + k)2
− ej

(1 + k)2(ej + k)2

}q

j=1

.

The variance-covariance difference E−1
k EE−1

k − (1 + k)−2E−1
k EE−1

k will be positive definite (pd) if
and only if

(1 + k)2ej − ej > 0 or ej [(1 + k)2 − 1] > 0.

For k > 0, we can certainly see that ej [(1+ k)2 − 1] > 0. Therefore, E−1
k EE−1

k − (1+ k)−2E−1
k EE−1

k

is pd. The proof is completed by Lemma 2.

3.3 ν̂d and ν̂ck

We examined the difference between the MSEM of the Liu and the contraction ridge estimator as follows:

MSEM(ν̂d)−MSEM(ν̂ck) = σ2
(
E−1

d Ed+E
−1Ed+E

−1
d − (1 + k)−2E−1

k EE−1
k

)
+ (d− 1)2E−1

d νLSν
′

LSE
−1
d

− (1 + k)−2
(
E−1

k AνLSν
′

LSA
′
E−1

k

)
.

(29)

Given that k > 0, and d > 0 we have the following theorem.
Theorem 3. Given two linear estimators ν̂d and ν̂ck. If k > 0, ν̂ck dominates ν̂d given that MSEM(ν̂d)−
MSEM(ν̂ck) > 0 if and only if

(1+k)−2ν′LSA
′
E−1

k [σ2(E−1
d Ed+E

−1Ed+E
−1
d −(1+k)−2E−1

k EE−1
k +(d−1)2E−1

d νLSν
′

LSE
−1
d ]−1E−1

k AνLS ≤ 1.

Proof. Using the SMSE for both estimators in (17) and (26), we obtain

V (ν̂d)− V (ν̂ck) = σ2(E−1
d Ed+E

−1Ed+E
−1
d − (1 + k)−2E−1

k EE−1
k )

= σ2diag

{
(ej + d)2

ej(ej + 1)2
− ej

(1 + k)2(ej + k)2

}q

j=1

.
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The variance-covariance difference E−1
d Ed+E

−1Ed+E
−1
d −(1+k)−2E−1

k EE−1
k will be positive definite

(pd) if and only if

(1 + k)2(ej + d)2(ej + k)2 − e2j (ej + 1)2 > 0 or (1 + k)(ej + d)(ej + k)− ej(ej + 1) > 0.

For k > 0, we can certainly see that (1 + k)(ej + d)(ej + k) − ej(ej + 1) > 0. Therefore,
E−1

d Ed+E
−1Ed+E

−1
d − (1 + k)−2E−1

k EE−1
k is pd. The proof is completed by Lemma 2.

3.4 ν̂KL and ν̂ck

We examined the difference between the MSEM of the Liu and the contraction ridge estimator as follows:

MSEM(ν̂KL)−MSEM(ν̂ck) = σ2
(
E−1

k EaE
−1EaE

−1
k − (1 + k)−2E−1

k EE−1
k

)
+ 4k2E−1

k νLSν
′

LSE
−1
k

− (1 + k)−2
(
E−1

k AνLSν
′

LSA
′
E−1

k

)
.

(30)

Given that k > 0, we have the following theorem.
Theorem 4. Given two linear estimators ν̂KL and ν̂ck. If k > 0, ν̂ck dominates ν̂KL given that
MSEM(ν̂KL)−MSEM(ν̂ck) > 0 if and only if

(1+ k)−2ν′LSA
′
E−1

k [σ2(E−1
k EaE

−1EaE
−1
k − (1+ k)−2E−1

k EE−1
k +4k2E−1

k νLSν
′

LSE
−1
k ]−1E−1

k AνLS ≤ 1.

Proof. Using the SMSE for both estimators in (20) and (26), we obtain

V (ν̂KL)− V (ν̂ck) = σ2(E−1
k EaE

−1EaE
−1
k − (1 + k)−2E−1

k EE−1
k )

= σ2diag

{
(ej − k)2

ej(ej + k)2
− ej

(1 + k)2(ej + k)2

}q

j=1

.

The variance-covariance difference E−1
k EaE

−1EaE
−1
k − (1 + k)−2E−1

k EE−1
k will be positive definite

(pd) if and only if
(1 + k)2(ej − k)2 − e2j > 0 or (1 + ej − k) > 0.

For k > 0, there is possibility that (1+ej−k) > 0. Therefore, E−1
k EaE

−1EaE
−1
k −(1+k)−2E−1

k EE−1
k

is pd. The proof is completed by Lemma 2.

3.5 ν̂c and ν̂ck

We examined the difference between the MSEM of the Contraction method and the contraction ridge
estimator as follows:

MSEM(ν̂c)−MSEM(ν̂ck) = σ2((1 + k)−2E−1 − (1 + k)−2E−1
k EE−1

k ) (31)

+ k2(1 + k)−2νLSνLS − k2(1 + k)−2(E−1
k AνLSν

′

LSA
′
E−1

k ).

Given that k > 0, we have the following theorem.
Theorem 5. Given two linear estimators ν̂c and ν̂ck. If k > 0, ν̂ck dominates ν̂c given that MSEM(ν̂c)−
MSEM(ν̂ck) > 0 if and only if

(1 + k)−2ν′LSA
′
E−1

k [σ2(1 + k)−2(E−1 − E−1
k EE−1

k + k2νLSνLS ]
−1E−1

k AνLS < 1.

Proof. Using the SMSE for both estimators in (23) and (26), we obtain

V (ν̂c)− V (ν̂ck) = σ2(1 + k)−2(E−1 − E−1
k EE−1

k )
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= σ2(1 + k)−2diag

{
1

ej
− ej

(ej + k)2

}q

j=1

.

The variance-covariance difference E−1 − E−1
k EE−1

k will be positive definite (pd) if and only if

(ej + k)2 − e2j > 0 or (ej + k)− ej > 0.

For k > 0, we can certainly see that (ej + k) − ej = k > 0. Therefore, E−1 − E−1
k EE−1

k is pd. The
proof is completed by Lemma 2.

3.6 Theoretical Validation

We validate the practical applicability of our theoretical findings using real-world data, ensuring their
relevance beyond simulated scenarios. A comprehensive description of the data is provided in Section 5.

Table 1: Theoretical conditions and computed values for different theorems.

Theorem Theoretical Conditions Values

1 σ−2ν′
LSA

′
[(1 + k)2EkEEk − E]−1AνLS ≤ 1 0.0772

2 σ−2ν′
LSA

′
[(1 + k)2E − E + σ−2k2(1 + k)2νLSνLS ]AνLS ≤ 1 0.1282

3 (1 + k)−2ν′
LSA

′
E−1

k [σ2(E−1
d Ed+E−1Ed+E−1

d − (1 + k)−2E−1
k EE−1

k + (d − 1)2E−1
d νLSν

′
LSE−1

d ]−1E−1
k AνLS ≤ 1 5.4e-05

4 (1 + k)−2ν′
LSA

′
E−1

k [σ2(E−1
k EaE

−1EaE
−1
k − (1 + k)−2E−1

k EE−1
k + 4k2E−1

k νLSν
′
LSE−1

k ]−1E−1
k AνLS ≤ 1 0.1291

5 (1 + k)−2ν′
LSA

′
E−1

k [σ2(1 + k)−2(E−1 − E−1
k EE−1

k + k2νLSνLS ]−1E−1
k AνLS ≤ 1 0.9691

4 The Monte Carlo simulation

This section presents a simulation study comparing the performance of different estimators considered in
this study. The goal is to provide a comprehensive analysis under varying conditions, including sample
size, multicollinearity level, noise level and the number of predictors. In addition, the evaluation criteria
for the different estimation methods are also examined.

4.1 The design of the experiment

The regressors are generated following the approaches of [20], [12], [4] and [1], where:

xij = (1− γ2)1/2tij + γtip, i = 1, . . . , n, j = 1, . . . , q. (32)

Here, tij are independent standard normal pseudo-random numbers, and γ is chosen to con-
trol the correlation between two regressors, where the correlation is given by γ2. The variables are
standardized so that X ′X is in correlation form. We consider five different correlation levels: γ2 =
0.80, 0.90, 0.95, 0.99, 0.999. The number of regressors is set to p = 4 and p = 8 when n = 30, 50, 100, 200.

Newhouse and Oman [23] noted that the MSE is minimized subject to the constraint ν′ν = 1. We
select the coefficients ν1, . . . , νp as the normalized eigenvector corresponding to the largest eigenvalue of
X ′X. The response variable is generated by:

yi = ν0 + ν1xi1 + · · ·+ νqxiq + εi, i = 1, . . . , n, (33)

where εi are independent normal pseudo-random numbers with mean zero and variance σ2. The
intercept ν0 is set to zero for simplicity. The values of σ2 considered are 5 and 10. For each choice of γ, n,
and p, we generate the data and perform simulations 2,000 times with new error terms in each iteration.
After sampling, we compute the Estimated MSE for each of the estimators as follows:

EMSE(ν̂) =
1

2000

2000∑
i=1

(ν̂(i) − ν)′(ν̂(i) − ν) (34)
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where ν̂i represents each estimator under consideration for 2000 replication. The results are
summarized in Tables 2 and 3.

4.2 Simulation results

The results in Tables 2 and 3 present the Mean Squared Errors (MSE) obtained by different estimation
methods (LS, Ridge, Liu, KL, COLS, CRidge) for different values of p = 4 and p = 8, n = 30, 50, 100, 200,
and σ = 5 and σ = 10. These results allow us to assess the performance of each method according to the
complexity of the problem (increasing p) and the sample size.

Generally, for a given value of p and σ, we observe that increasing n leads to a significant reduction
in the Mean Squared Error for all methods. This is particularly notable for traditional methods such as
LS, which are especially sensitive to small sample sizes. For n = 30, the MSEs are significantly higher
than for n = 200. However, this improvement is also observed for regularized methods such as Ridge,
CRidge, and Liu, which confirms their increased robustness to variations in sample size.

When p increases from 4 to 8, a significant degradation in the performance of the methods is observed,
particularly for LS which displays extremely high MSEs when p is also high. This is due to the fact
that the non-regularized LS model becomes increasingly unstable as p increases, especially when n is
relatively small. The regularized methods Ridge, CRidge, and Liu show better resistance to this increase
in complexity, although their performance also decreases with increasing p.

Comparison of Methods

i. LS exhibits the worst performance in terms of MSE in almost all scenarios, especially when σ is high
or when γ values are close to 1 (strong correlations).

ii. Ridge and CRidge show a clear improvement over OLS, with CRidge consistently outperforming
Ridge. This is particularly evident for large samples where CRidge presents the lowest MSE values.

iii. Liu is competitive compared to Ridge but generally performs less than CRidge, although its results
remain satisfactory compared to LS.

iv. KL and COLS exhibit interesting behaviours. KL shows very low MSEs for weak correlations γ = 0.8
but explodes for high correlations. COLS appears effective for small γ values but becomes unstable
for stronger correlations.

Increasing the standard deviation σ naturally worsens the MSEs for all methods. However, regularized
methods seem less affected by this increase than traditional methods, which confirms their robustness.

Overall, regularized methods, particularly CRidge, show good performance even when p increases or
when correlations are high. LS is unsuitable for complex scenarios or small sample sizes. Therefore, the
choice of method strongly depends on the sample size, model complexity (number of predictors), and the
correlation structure between variables.

The Figures 1 and 2 present the evolution of the Mean Squared Error (MSE) as a function of the
sample size for different estimators under a multicollinearity level of γ = 0.8. Specifically, Figure 1
corresponds to a standard deviation of σ = 5, while Figure 2 corresponds to σ = 10.

The results confirm that increasing the sample size consistently reduces the MSE for all estimators,
indicating improved performance with more data. This trend is particularly noticeable for traditional
estimators such as LS, which are highly sensitive to small sample sizes and exhibit significantly higher
MSEs for smaller samples. However, this improvement with increasing sample size is also evident for reg-
ularized methods such as Ridge, CRidge, and Liu, demonstrating their enhanced robustness to variations
in sample size.

Furthermore, the Ridge and CRidge estimators effectively reduce prediction error under severe mul-
ticollinearity, as expected by their design. The CRidge estimator consistently outperforms the other
methods, presenting the lowest MSE values across different sample sizes. This superior performance
of CRidge is particularly evident for large samples, highlighting its effectiveness in terms of numerical
stability and predictive accuracy.

The Figures illustrate that the improvement achieved by the CRidge estimator is most pronounced
when the sample size increases. This confirms that CRidge is a promising alternative to classical and
other biased estimation methods when dealing with multicollinearity in regression analysis.

These findings support the theoretical conclusions drawn in previous sections and justify the proposed
estimator’s applicability under various sample sizes and multicollinearity levels.
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Table 2: Simulated result in terms of MSE when p = 4

σ = 5 σ = 10

n Estimator 0.8 0.9 0.95 0.99 0.999
... 0.8 0.9 0.95 0.99 0.999

30 LS 8.937 15.714 29.356 138.368 1361.430
... 35.748 62.854 117.425 553.472 5445.720

Ridge 4.764 6.968 10.387 24.226 55.437
... 18.726 27.528 41.216 96.675 221.680

Liu 7.014 10.511 15.274 27.435 85.119
... 28.024 41.998 61.049 109.602 340.488

KL 2.246 2.540 2.943 15.591 586.102
... 8.633 9.920 11.693 62.674 2344.873

COLS 1.347 2.425 5.516 49.110 898.741
... 3.510 7.955 20.486 195.295 3594.343

CRidge 1.027 1.428 2.369 9.409 38.418
... 2.217 3.992 7.967 36.709 153.388

50 LS 4.035 7.499 14.562 71.664 717.549
... 16.141 29.995 58.247 286.655 2870.195

Ridge 2.785 4.432 7.082 18.571 46.554
... 10.859 17.386 27.955 73.982 186.114

Liu 3.700 6.365 10.711 24.510 54.930
.
.. 14.788 25.430 42.813 97.724 218.901

KL 1.805 2.275 2.576 2.687 200.749
... 6.799 8.684 9.991 10.901 803.516

COLS 0.854 1.135 2.096 18.756 409.877
... 1.363 2.615 6.625 73.716 1638.774

CRidge 0.811 0.945 1.355 5.553 28.594
... 1.173 1.857 3.691 21.058 113.978

100 LS 1.904 3.292 6.090 28.421 278.670
... 7.614 13.168 24.361 113.684 1114.679

Ridge 1.512 2.368 3.835 11.266 35.852
... 5.860 9.212 15.008 44.693 143.230

Liu 1.832 3.074 5.362 16.917 37.345
... 7.324 12.284 21.423 67.596 149.037

KL 1.173 1.613 2.151 2.550 32.274
... 4.371 6.054 8.175 10.060 129.560

COLS 0.785 0.826 1.009 4.974 122.369
... 0.942 1.194 2.050 18.315 488.522

CRidge 0.780 0.796 0.888 2.409 17.326
..
. 0.911 1.071 1.572 8.131 68.636

200 LS 1.205 2.307 4.528 22.337 222.707
... 4.820 9.226 18.112 89.347 890.827

Ridge 1.010 1.753 3.022 9.560 32.198
... 3.899 6.788 11.782 37.863 128.596

Liu 1.175 2.195 4.107 14.517 33.275
... 4.699 8.774 16.415 58.076 132.794

KL 0.833 1.281 1.845 2.531 19.869
... 3.088 4.766 6.952 9.918 79.909

COLS 0.786 0.797 0.894 3.553 90.448
... 0.881 1.007 1.518 12.553 360.776

CRidge 0.785 0.783 0.828 1.910 14.415
... 0.870 0.950 1.261 6.047 56.912

Figure 1: MSE against sample size for γ = 0.8 and σ = 5 using the data from Table 2
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Table 3: Simulated result in terms of MSE when p = 8

σ = 5 σ = 10

n Estimator 0.8 0.9 0.95 0.99 0.999
... 0.8 0.9 0.95 0.99 0.999

30 LS 26.620 48.353 91.343 430.023 4196.574
... 106.482 193.413 365.373 1720.093 16786.295

Ridge 12.015 17.985 26.908 62.266 144.953
... 47.693 71.579 107.298 248.842 579.741

Liu 18.026 25.935 34.779 46.066 69.133
... 72.107 103.724 139.182 184.575 276.727

KL 4.774 6.120 9.387 77.441 2097.549
... 18.821 24.329 37.549 310.097 8390.647

COLS 3.084 7.156 9.387 168.786 2920.924
... 10.560 27.024 72.322 674.172 11683.202

CRidge 1.734 3.046 9.387 25.450 103.361
... 5.195 10.660 22.297 101.101 413.262

50 LS 8.370 14.369 26.406 122.379 1198.138
... 33.481 57.475 105.622 489.518 4792.553

Ridge 5.619 8.553 13.404 35.806 96.928
... 22.150 33.840 53.214 142.866 387.565

Liu 7.595 12.184 19.744 43.700 40.117
.
.. 30.374 48.730 78.979 174.749 160.684

KL 3.492 4.427 5.261 5.026 273.475
... 13.488 17.231 20.630 20.089 1094.406

COLS 1.003 1.441 2.840 26.945 631.559
... 1.915 3.808 9.583 106.473 2525.513

CRidge 0.907 1.129 1.761 8.531 53.388
... 1.530 2.573 5.301 32.964 213.148

100 LS 6.017 11.757 23.281 115.464 1151.590
... 24.067 47.026 93.123 461.854 4606.359

Ridge 4.328 7.411 12.409 35.092 95.585
... 17.017 29.283 49.233 140.002 382.194

Liu 5.621 10.306 18.098 43.275 37.027
... 22.478 41.213 72.384 173.385 148.300

KL 2.944 4.157 5.221 4.139 243.422
... 11.317 16.136 20.440 16.522 974.205

COLS 0.898 1.224 2.405 24.528 598.754
... 1.404 2.872 7.793 96.781 2394.281

CRidge 0.852 1.025 1.588 8.099 52.067
..
. 1.223 2.089 4.559 31.205 207.855

200 LS 2.756 5.291 10.387 51.191 510.131
... 11.025 21.165 41.548 204.763 2040.525

Ridge 2.239 3.912 6.787 21.689 72.665
... 8.753 15.367 26.792 86.342 290.432

Liu 2.675 4.994 9.286 31.305 45.096
... 10.698 19.975 37.141 125.206 180.295

KL 1.779 2.756 4.003 5.389 43.358
... 6.765 10.570 15.508 21.251 173.829

COLS 0.824 0.871 1.120 7.129 204.677
... 0.959 1.267 2.423 26.934 817.783

CRidge 0.817 0.837 0.971 3.416 30.732
... 0.930 1.134 1.839 12.159 122.283

Figure 2: MSE against sample size for γ = 0.8 and σ = 10 using the data from Table 2
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5 Illustrative applications

The Electricity dataset contains cost function data for 145 US electricity producers in 1955, with an
additional 14 observations representing aggregate statistics (Greene, 2003). For statistical analysis, only
the first 145 observations should be used. The data set comprises eight variables:

• cost: Total production cost.
• output: Total output of electricity.
• labor: Wage rate of labor.
• laborshare: Cost share for labor.
• capital: Capital price index.
• capitalshare: Cost share for capital.
• fuel: Fuel price.
• fuelshare: Cost share for fuel.

The total production cost serves as the response variable, modeled as a function of seven standardized
predictors. To evaluate the adequacy of the linear regression model, we employed the Ramsey RESET test,
which yielded a p-value of 1, indicating no evidence of model misspecification. The model was estimated
using the least squares (LS) method, and diagnostic checks were performed. The variance inflation factor
(VIF), presented in Figure 1, along with a condition number of 23.37, suggests multicollinearity.

To evaluate the predictive performance of the estimator, we used scalar mean squared error (SMSE),
prediction mean squared error (PMSE) and prediction mean absolute error (PMAE). The data set was
randomly partitioned into 80% training set and a 20% test set. The model parameters were estimated
on the training data and the performance metrics were calculated using the test data to evaluate the
generalizability.

The application result in Table 4 rigorously evaluates the performance of the estimators considered
in this study, with a particular focus on the stability of the estimation and the predictive precision.
The analysis compares Least Squares (LS), Ridge Regression (RIDGE), Liu Estimator (LIU), Kibria-
Lukman Estimator (KL), Contraction Least Squares (COLS), and the newly proposed contraction ridge
estimator (CRidge). Performance is assessed using the Scalar Mean Squared Error (SMSE), Prediction
Mean Squared Error (PMSE) and Prediction Mean Absolute Error (PMAE).

Although LS remains an unbiased estimator, it suffers from high variance in the presence of multi-
collinearity, making it unsuitable for reliable parameter estimation. The CRidge estimator demonstrates
superior performance across multiple criteria, striking an optimal balance between bias and variance. It
achieves an SMSE of 11.0217, significantly lower than OLS (52.6319) and comparable to other shrinkage-
based estimators. Notably, the KL estimator attains the lowest SMSE (2.1535), reflecting its strong
regularization capabilities.

Predictive accuracy, assessed through PMSE, highlights the robustness of CRidge, which attains one
of the lowest values (15.7785), outperforming LS (134.8210), RIDGE (130.8600), and Liu (129.0342).
The COLS estimator also demonstrates strong predictive performance (PMSE = 16.1763), reinforcing
the effectiveness of contraction-based methods. Although KL achieves a competitive PMSE (126.9678),
it does not surpass CRidge, further supporting the advantages of the proposed estimator.

PMAE, which provides an alternative measure of predictive consistency by capturing absolute de-
viations, confirms CRidge’s superior predictive stability (PMAE = 2.6232), closely followed by COLS
(PMAE = 2.6412). Traditional estimators, including LS (6.7044), RIDGE (6.6107), and Liu (6.5648),
exhibit significantly higher PMAE values, reinforcing their limitations in handling multicollinearity.
Although KL performs reasonably well (6.5170), it remains outperformed by CRidge.

Overall, the proposed CRidge estimator emerges as the most effective approach, offering substantial
improvements in estimation stability and predictive accuracy. While COLS exhibits strong predictive
performance, its higher SMSE suggests the need for fine-tuning in some applications. The KL, Ridge,
and Liu estimators remain competitive alternatives, but their slightly higher PMSE and PMAE values
indicate that CRidge is a more robust and globally applicable choice.

6 Concluding Remarks

Linear regression remains a fundamental tool for modeling continuous response variables, yet multi-
collinearity poses significant challenges to the accuracy and reliability of least squares (LS) estimates.
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Figure 3: Variance Inflation Factor (VIF) for Predictor Variables

Table 4: Regression Estimates and Model Validation Using PMSE and
PMAE

Coef. LS Ridge LIU KL COLS CRidge

Intercept 13.9470 13.8682 13.8280 13.7894 8.4066 8.3591
X1 20.7966 20.6483 20.5738 20.4999 12.5352 12.4458
X2 1.1389 1.1821 1.2028 1.2254 0.6864 0.7125
X3 1.5159 1.3405 1.2931 1.1652 0.9137 0.8080
X4 0.8668 0.8781 0.8815 0.8895 0.5224 0.5293
X5 0.4957 0.1355 0.0658 -0.2247 0.2988 0.0817
X6 1.6994 1.6618 1.6438 1.6242 1.0243 1.0017
X7 0.3326 -0.0276 -0.0927 -0.3877 0.2005 -0.0161

SMSE 52.6319 13.0051 10.9094 2.1535 106.1460 11.0217
PMSE 134.8210 130.8600 129.0342 126.9678 16.1763 15.7785
PMAE 6.7044 6.6107 6.5648 6.5170 2.6412 2.6232

While regularization techniques such as ridge regression and the Liu estimator have been extensively
studied, contraction least squares have received comparatively less attention. We introduce the contrac-
tion ridge estimator (CRidge) as a novel alternative that effectively addresses multicollinearity while
preserving predictive accuracy. We rigorously derived the statistical properties of CRidge and established
theoretical conditions under which it outperforms existing regularization methods. These conditions
were validated empirically using the electricity dataset, confirming their practical relevance. Addition-
ally, extensive simulations across varying sample sizes, predictor counts, multicollinearity levels, and
error variances demonstrated the superiority of CRidge, as evidenced by its consistently lower mean
squared error (MSE). A real-world application using electricity consumption data further reinforced these
findings, showing that CRidge yields the lowest predicted mean squared error (PMSE) and predicted
mean absolute error (PMAE) among competing shrinkage estimators. Diagnostic tests confirmed the
appropriateness of the model, highlighting its robustness in real-world settings. The proposed estimator
offers a significant advancement in regression modeling, particularly in fields where multicollinearity is
prevalent, such as economics, environmental sciences, finance, and biomedical research. Given its strong
theoretical foundation and empirical performance, CRidge presents a compelling alternative to conven-
tional shrinkage methods. Future research will explore a robust contraction Ridge estimator, extending
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the methodology to accommodate both multicollinearity and the presence of outliers, ensuring broader
applicability across diverse disciplines and datasets.
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