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Abstract

In regression models for count data, the presence of both multicollinearity among covariates and ex-
cess zeros often leads to unstable and biased parameter estimates, especially when data are subject
to censoring. To address this, we propose a regularized estimation framework for the Right-Censored
Zero-Inflated Poisson (RCZIP) regression model, integrating Ridge, Liu, and a Modified Ridge-Type
(MRT) estimator specifically adapted to this context. We develop the theoretical properties of these
estimators, providing matrix-based and eigenvalue-based criteria for comparing their mean squared
errors. An extensive Monte Carlo simulation study evaluates the performance of the proposed methods
under varying degrees of multicollinearity and censoring. The results show that the MRT estimator
consistently outperforms traditional Maximum Likelihood and standard regularized estimators, offer-
ing greater robustness and accuracy. The practical utility of our approach is demonstrated through
two real-world applications: a social contact survey in Mayotte and an environmental dataset, both
characterized by zero inflation, censoring, and high multicollinearity. The findings confirm the rele-
vance of regularization, particularly MRT, in improving model stability and predictive performance
for censored count data models.

Keywords: Zero-Inflated Poisson Regression; Right-Censoring; Multicollinearity; Regularization; Monte
Carlo simulation

1 Introduction

Count data frequently arise in various fields such as social sciences, biostatistics, economics, and envi-
ronmental studies, where they typically represent the number of occurrences of discrete events within a
specific time or space interval (Cox and Oakes, 1984; Cameron and Trivedi [8]). These data are often
modeled using Poisson or Negative Binomial distributions. However, in practice, count data may dis-
play excess zeros (zero inflation) and be subject to right-censoring due to measurement limitations or
detection thresholds (Lambert [19]; Kalbfleisch and Prentice [1]). Failure to account for censoring can
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bias parameter estimates and compromise inferential validity, especially when the censoring mechanism
is related to observable covariates (Mehta and Patel [33]).

Another major issue in count data analysis is multicollinearity among covariates, which occurs when
explanatory variables are highly correlated. This situation inflates the variance of the parameter esti-
mates, making them unstable and difficult to interpret ( [17]; Menard [29]). In Poisson regression models,
these problems can be exacerbated due to the discrete and often skewed nature of count data. Regulariza-
tion methods, such as Ridge regression (Hoerl et al. [13]; Tikhonov [37]), have been widely used to mitigate
multicollinearity in linear and generalized linear models. However, their application to zero-inflated and
censored models remains limited, despite the practical importance of these cases (Fitzmaurice et al. [12]).

The aim of this paper is to propose a regularized estimation framework for the Right-Censored Zero-
Inflated Poisson (RCZIP) regression model, integrating Ridge, Liu (Liu, [21]), and a Modified Ridge-Type
(MRT) estimator (Lukman et al.[25]) specifically adapted to this complex context. We derive the theo-
retical properties of these estimators and compare them using matrix-based and eigenvalue-based mean
squared error criteria. Extensive Monte Carlo simulations are conducted to evaluate the performance of
these methods under varying levels of multicollinearity and censoring. Finally, the practical relevance of
our approach is illustrated through two real-world applications: a social contact survey from Mayotte
and an environmental dataset characterized by zero inflation and high multicollinearity.

The remainder of this paper is organized as follows. Section 2 presents the RCZIP model and discusses
the limitations of the Maximum Likelihood Estimator (MLE) in the presence of multicollinearity, and
presents several regularized estimators, including Ridge, Liu, and the proposed MRT estimator. Section
3 provides a theoretical comparison of these estimators based on their mean squared error properties.
Section 4 reports the results of extensive Monte Carlo simulation studies. Section 5 applies the proposed
methods to two real datasets. Finally, Section 6 concludes the paper by summarizing the findings and
outlining future research directions.

2 The right-censored zero-inflated Poisson model

Let the response variable be denoted by Yi, for i = 1, . . . , n, and let πi be the probability that Yi is
a structural zero, where 0 ≤ πi ≤ 1. The random variable Yi follows a Zero-Inflated Poisson (ZIP)
distribution if:

P (Yi = y) =

{
πi + (1− πi)e

−λi , if y = 0,

(1− πi)
e−λiλy

i

y! , if y > 0.
(1)

with expectation E[Yi] = (1 − πi)λi and variance Var(Yi) = (1 − πi)λi(1 + πiλi), for i = 1, . . . , n.
In this model, zeros in the outcome variable Yi can originate from two sources: (i) structural zeros with
probability πi, or (ii) Poisson-distributed zeros with probability (1− πi).

The parameters λi and πi are modeled using link functions to establish linear predictors as follows:

logit(πi) = γ⊤Gi = γ0 + γ1G1,i + · · ·+ γqGq,i, i = 1, . . . , n, (2)

where Gi = (1, G1,i, . . . , Gq,i)
⊤ is a vector of (q + 1) covariates, and γ = (γ0, γ1, . . . , γq)

⊤ is a vector
of parameters.

For the count component:

− log(λi) = β⊤Xi = β0 + β1X1,i + · · ·+ βpXp,i, i = 1, . . . , n, (3)

where Xi = (1, X1,i, . . . , Xp,i)
⊤ is a vector of (p + 1) covariates, and β = (β0, β1, . . . , βp)

⊤ is the
corresponding parameter vector. We consider the case where the response variable Yi in the zero-inflated
Poisson (ZIP) model is subject to right censoring. In this framework, we observe the tuple (Y ∗

i , νi,Xi,Gi)
for each individual i = 1, 2, . . . , n, where Y ∗

i = min(Yi, Ci), with Ci denoting the censoring threshold,
and νi = I(Yi < Ci) indicating whether the observation is censored. If Yi = Ci, then Y ∗

i = Ci and νi = 0.
We further define Ji = I(Y ∗

i = 0) to distinguish structural zeros.
Given these definitions, the log-likelihood function of the right-censored ZIP (RCZIP) model, with

parameter vector θ := (β⊤,γ⊤)⊤, is given by [35]:

2



ℓ(θ) =

n∑
i=1

{
νi

[
Ji ln

(
eγ

⊤Gi + e− exp(β⊤Xi)
)
+ (1− Ji)

(
Y ∗
i β

⊤Xi − exp(β⊤Xi)− ln(Y ∗
i !)
)]

+(1− νi)(1− Ji) ln

1−
Y ∗
i −1∑
t=0

e− exp(β⊤Xi) exp(β⊤Xi)
t

t!

− ln(1 + eγ
⊤Gi)

 . (4)

The maximum likelihood estimator (MLE), denoted by θ̂ := (β̂⊤, γ̂⊤)⊤, is obtained by solving the
score equation ∂ℓ(θ)/∂θ = 0 using nonlinear optimization. In practice, the MLE is computed numerically
using the Iterative Reweighted Least Squares (IRLS) algorithm. The parameter update at each iteration
is given by:

θ(m+1) = θ(m) + I(θ(m))−1S(θ(m)), (4)

where S(θ) = ∂ℓ(θ)
∂θ is the score function, and I(θ) = −E

[
∂2ℓ(θ)
∂θ∂θ⊤

]
is the Fisher information matrix.

At convergence, the MLE can be expressed as:

θ̂MLE = Λ−1X⊤Wẑ, (5)

where Λ = X⊤WX, W = diag
(
∂λi

∂θ
∂πi

∂θ

)
is the weight matrix, and

ẑi = log(λ̂i) +
(y∗i − λ̂i)√

WV
, with V = diag ((1− πi)λi(1 + πiλi))

being the variance matrix of the pseudo-responses. The Mean Squared Error Matrix (MSEM) and Scalar
Mean Squared Error (SMSE) are:

MSEM(θ̂MLE) = Λ−1, (6)

SMSE(θ̂MLE) =

p+q∑
j=1

1

ηj
, (7)

where ηj are the eigenvalues of X⊤WX.

The asymptotic properties of the MLE θ̂ under the censored ZIP model have been rigorously studied
in [35]. However, in practice, this estimator may become unstable when covariates are highly correlated,
leading to unreliable inference.

2.1 Proposed estimators

To address the challenges posed by multicollinearity and potential instability of the MLE in the RCZIP
model, we develop alternative estimation strategies. Building on the formulation and likelihood-based
inference introduced earlier, we propose several penalized estimation approaches that aim to enhance
robustness, particularly in the presence of correlated covariates or small sample sizes.

2.1.1 RCZIP Ridge Estimator

In this section, we propose an extension of the Ridge estimator for the Right-Censored Zero-Inflated
Poisson Regression (RCZIP) model. The main objective of this estimator is to address multicollinearity
issues while improving the stability of parameter estimation. Ridge regression was introduced by Hoerl
and Kennard to address multicollinearity in the linear regression model. The standard ridge estimator is
given by:

β̂k = (X⊤X+ kI)−1X⊤y, (8)

where k is the penalization parameter. In the context of the Right-Censored Zero-Inflated Poisson
(RCZIP) model, we propose an extension of this estimator using the weighted information from the

model. The RCZIP Ridge Estimator is denoted by θ̂R, and is defined as:
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θ̂Ridge = (Λ + kI)−1Λθ̂MLE . (9)

The scalar mean squared error (SMSE) is given by:

SMSE(θ̂Ridge) =

p+q∑
j=1

(
ηj

(ηj + k)2

)
+ k2

p+q∑
j=1

(
α̂2
j

(ηj + k)2

)
(10)

where ηj is the eigenvalues of X⊤WX and α̂j are the components of Q⊤θ̂MLE . The matrix mean
squared error (MSEM) of the ridge estimator is given by:

MSEM(θ̂Ridge) = QΛkΛΛkQ
⊤ + k2Λkαα⊤Λk, (11)

where Λ = X⊤WX, Λk = (X⊤WX+ kIp)
−1 and Q is the matrix of eigenvectors of X⊤WX.

Hoerl and Kennard suggested the following estimator for k in a linear regression model:

k̂HM =
pσ2∑p+q

j=1(α̂j)2

Schaefer and Kibria proposed another approach based on the maximum of the components of α̂j :

k̂1 =
1

max((α̂j)2)

We will use these approaches to estimate k in the RCZIP model.

2.1.2 RCZIP Liu Regression Estimator

Mayer and Wilke [32] introduced the contraction estimator, which is defined as:

β̂ρ = (1 + ρ)−1β̂MLE. (12)

Building upon this, Liu [21] proposed an alternative method called the Liu estimator that integrates
both the ridge and contraction estimators. This approach has demonstrated competitive performance
against the traditional ridge estimator and garnered considerable regularization interest. The Liu
estimator is defined as:

θ̂Liu = ΛaΛdθ̂MLE, 0 ≤ d < 1, (13)

where Λa = (X ′WX + I)−1, Λd = X ′WX + dI, and d represents the penalization parameter and is
obtained through the following equation in this study.

d̂ = min

{
α̂2
i

σ̂2

λi
+ α̂2

i

}

The properties of the estimator are as follows:
The bias of θ̂Liu is given by:

bias(θ̂Liu) = [ΛaΛd − I] θ

The variance-covariance matrix is:

cov(θ̂Liu) = QΛaΛdΛ
−1ΛdΛaQ

T .

Hence, the MSEM and SMSE are given as:

MSEM(θ̂Liu) = QΛaΛdΛ
−1ΛdΛaQ

T + (d− 1)2Λaα
′αΛa (14)

SMSE(θ̂Liu) =

q∑
j=1

(nj + d)2

(nj+1)2nj
+ (d− 1)2

q∑
j=1

α2
j

(nj+1)2
(15)
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2.1.3 RCZIP-MRT

Lukman et al. (2019) developed the modified ridge-type (MRT) estimator to account for multicollinearity
(linear dependency among the predictors) in the linear regression model by incorporating an additional
shrinkage parameter to improve the performance of the ridge estimator. Their results indicate that the
MRT estimator behaves similarly to the ridge estimator in parameter estimation while demonstrating
superior predictive accuracy. It has attracted attention from researchers, leading to its extension across
different generalized linear models. Recent studies have applied the MRT estimator to models such as the
inverse Gaussian regression model (Akram et al.[2]), Poisson regression model (Lukman et al. [25]), Bell
regression model (Bulut et al.[7]), and Beta regression model (Akram et al.[3]), among others. Hence,
the MRT is defined as follows:

β̂kd = (X⊤X+ k(1 + d)I)−1X⊤y (16)

Consequently, we propose an extension of this estimator to RCZIP and define RCZIP-MRT as follows:

θ̂MRT = (Λ + k(1 + d)I)−1Λθ̂MLE (17)

where k and d are the penalization parameters.
The MSEM of the MRT estimator is given by:

MSEM(θ̂MRT) = QΛkdΛΛkdQ
⊤ + (k(1 + d))2Λkdαα⊤Λkd (18)

where Λkd = (X⊤WX+ k(1 + d)Ip)
−1.

The scalar mean squared error (SMSE) is given by:

SMSE(θ̂MRT ) =

p+q∑
j=1

(
ηj

(ηj + k(1 + d))2

)
+ (k(1 + d))2

p+q∑
j=1

(
α̂2
j

(ηj + k(1 + d))2

)
(19)

Having introduced the proposed penalized estimators for the RCZIP model, we now proceed to a theoret-
ical investigation of their statistical properties. In particular, we assess and compare their bias, variance,
and overall estimation accuracy using matrix and scalar mean squared error criteria.

3 Main Results

In this section, we present a theoretical comparison of the proposed estimators with the maximum
likelihood estimator (MLE) in the context of the RCZIP model. By analyzing their respective mean
squared error matrices (MSEM) and scalar mean squared errors (SMSE), we derive conditions under
which each regularized estimator outperforms the MLE. The results are established through key matrix
inequalities and existing lemmas in the literature, providing insight into the trade-offs between bias and
variance inherent to each method.
Lemma 1. (Farebrother [16]). Let T be a positive definite matrix, namely T > 0, and let ν be some
vector, then

T − νν′ ≥ 0 if and only if ν′T−1ν ≤ 1.

Lemma 2. (Trenkler and Toutenburg [36] ). Let θ̂j = Cjy, j = 1, 2 be two competing estimators for θ.

Suppose that V = V(θ̂1) − V(θ̂2) > 0, where V(θ̂j), j = 1, 2 denotes the variance-covariance matrix of

θ̂j. Then

∆(θ̂1, θ̂2) = MSEM(θ̂1)−MSEM(θ̂2) ≥ 0

if and only if
m′

2(V +m1m
′
1)

−1m2 ≤ 1,

where MSEM(θ̂j) and mj denote the mean squared error matrix and bias vector of θ̂j, respectively.

3.1 Comparison of θ̂MLE Versus θ̂R

We examined the difference between the MSEM of the MLE method and the RCZIP Ridge Regression
Estimator as follows:

MSEM(θ̂MLE)−MSEM(θ̂Ridge) = (Λ−1 − ΛkΛΛk)− k2ΛkθMLEθ
′

MLEΛk. (20)

Given that k > 0, we have the following theorem.
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Theorem 1. Given two linear estimators θ̂MLE and θ̂RCZIPRE. If k > 0, θ̂RCZIPRE dominates θ̂MLE

given that MSEM(θ̂MLE)−MSEM(θ̂Ridge) > 0 if and only if

k2Λkθ
′
MLE [Λ

−1 − ΛkΛΛk]
−1θMLEΛk ≤ 1.

Proof. Using the SMSE for both estimators in (7) and (19), we obtain

V (θ̂MLE)− V (θ̂Ridge) = (Λ−1 − ΛkΛΛk)

= diag

{
1

ηj
− ηj

(ηj + k)2

}p+q

j=1

.

The variance-covariance difference Λ−1 − Λ−1
k ΛΛ−1

k will be positive definite (pd) if and only if

(ηj + k)2 − η2j > 0 or (ηj + k)− ηj > 0.

For k > 0, we can certainly see that (ηj + k)− ηj > 0. Therefore, Λ−1 − Λ−1
k ΛΛ−1

k is pd. The proof
is completed by Lemma 2.

3.2 Comparison of θ̂Ridge Versus θ̂MRT

We examined the difference between the MSEM of the RCZIP Ridge Estimator and the RCZIP Modified
ridge-type Estimator as follows:

MSEM(θ̂Ridge)−MSEM(θ̂MRT ) =(ΛkΛΛk − ΛkdΛΛkd) + k2ΛkθMLEθ
′

MLEΛk (21)

− [k(1 + d)]2ΛkdθMLEθ
′

MLEΛkd).

Given that k, d > 0, we have the following theorem.
Theorem 2. Given two linear estimators θ̂Ridge and θ̂MRT . If k, d > 0, θ̂MRT dominates θ̂ giveRidgen

that MSEM(θ̂Ridge)−MSEM(θ̂MRT ) > 0 if and only if

[k(1 + d)]2Λkdθ
′
MLE [ΛkΛΛk − ΛkdΛΛkd + k2ΛkθMLEθ

′

MLEΛk]
−1θMLEΛkd ≤ 1.

Proof. Using the SMSE for both estimators in (10) and (19), we obtain

V (θ̂Ridge)− V (θ̂MRT ) = (ΛkΛΛk − ΛkdΛΛkd)

= diag

{
ηj

(ηj + k)2
− ηj

(ηj + k(1 + d))2

}p+q

j=1

.

The variance-covariance difference ΛkΛΛk − ΛkdΛΛkd will be positive definite (pd) if and only if

(ηj + k(1 + d))− (ηj + k) > 0

For k > 0, we can certainly see that (ηj + k(1 + d))− (ηj + k) > 0. Therefore, ΛkΛΛk − ΛkdΛΛkd is
pd. The proof is completed by Lemma 2.

3.3 Comparison of θ̂Lui Versus θ̂MRT

We examined the difference between the MSEM of the RCZIP-LE and RCZIP-MRT as follows:

MSEM(θ̂Liu)−MSEM(θ̂MRT ) =(ΛdΛaΛ
−1ΛaΛd − ΛkdΛΛkd) + (d− 1)2ΛaθMLEθ

′

MLEΛa (22)

− [k(1 + d)]2ΛkdθMLEθ
′

MLEΛkd).

Given that k, d > 0, we have the following theorem.
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Theorem 3. Given two linear estimators θ̂Liu and θ̂MRT . If k, d > 0, θ̂RCZIP−MRT dominates θ̂Liu
given that MSEM(θ̂Liu)−MSEM(θ̂MRT ) > 0 if and only if

[k(1 + d)]2Λkdθ
′
MLE [ΛkΛΛk − ΛkdΛΛkd + (d− 1)2ΛaθMLEθ

′

MLEΛa]
−1θMLEΛkd ≤ 1.

Proof. Using the SMSE for both estimators in (15) and (19), we obtain

V (θ̂Liu)− V (θ̂MRT ) = (ΛaΛdΛ
−1ΛdΛa − ΛkdΛΛkd)

= diag

{
(ηj + d)2

ηj(ηj + 1)2
− ηj

(ηj + k(1 + d))2

}p+q

j=1

.

The variance-covariance difference ΛaΛdΛ
−1ΛdΛa−ΛkdΛΛkd will be positive definite (pd) if and only

if
(ηj + k(1 + d))(ηj + d)− (ηj + k)(ηj + 1) > 0

For k, d > 0, we can certainly see that (ηj + k(1 + d))(ηj + d) − (ηj + k)(ηj + 1) > 0. Therefore,
ΛaΛdΛ

−1ΛdΛa − ΛkdΛΛkd is pd. The proof is completed by Lemma 2.

4 The Monte Carlo simulations

4.1 The design of the experiment

In this section, we analyze the Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean
Squared Difference Error (MSDE) of the ML, Ridge, Lui, and Modified Ridge Type estimators for the
Zero-Inflated Poisson Regression Model with right-censoring. We assess these estimators based on various
approaches, including the classical Maximum Likelihood (ML) method and proposed estimators. This
evaluation is carried out using a Monte Carlo simulation scheme. To evaluate the performance of the
different estimators, we primarily focus on the following criteria:

• MSE, using the following equation:

MSE =

N∑
i=1

(β̂i − β)⊤(β̂i − β)

N
,

• MAE, using the following equation:

MAE =

N∑
i=1

|β̂i − β|
N

,

• MSDE, using the following equation:

MSDE =

N∑
i=1

(β̂i − β)2

N
,

where β̂ is the estimator of β obtained from the Maximum Likelihood (ML) or other proposed
estimators. N is equal to 1000, corresponding to the number of replications used in the Monte Carlo
simulation with various sample sizes: n = 100, 300, 500, 1000.

Following McDonald (1975), we generated the simulated data using the following equation

xij =
√

1− ρ2wij + ρwip,= 1, 2, . . . , n; j = 1, 2, . . . , p (23)

Here, wij represents pseudo-random numbers drawn from the standard normal distribution, and ρ in-
dicates the correlation between the explanatory variables, with values of ρ = 0.95, 0.99, 0.999. We also
simulate the count data Yi fromto ZIP regression model (1)-(2)-(3) The number of regressors p equals 4
and 8. The average percentage of zero-inflation in the simulated data sets is 15%. The censoring values
are simulated from a zero-truncated Poisson model with the parameter λ, where λ is chosen to yield
various average censoring proportions C in the simulated samples, namely C = 15% and C = 40%. For
comparison purposes, we also provide results that would be obtained if there were no censoring (i.e.,
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when C = 0%), as these results will serve as a benchmark for assessing the performance of the proposed
estimators.

4.2 The discussion of results

To interpret the results presented in Tables 1 and 2, which summarize the performance of various es-
timators (MLE, Ridge, Liu, and MRT) under different levels of correlation (ρ) and sample sizes (n), it
is crucial to analyze the impact of both multicollinearity and censoring on their robustness. The per-
formance of the estimators varies with censoring levels (0%, 15%, and 40%), with increasing censoring
leading to a significant degradation, particularly for MLE. At 0% censoring, all estimators perform well,
especially for large sample sizes, with MRT showing slight superiority. At 15% censoring, the errors in-
crease considerably, with MLE being the most affected, while MRT and LIU maintain relatively stable
performance. At 40% censoring, traditional estimators like MLE struggle, whereas MRT and LIU remain
more robust. Similarly, multicollinearity, measured by ρ, affects the estimators differently. At low multi-
collinearity (ρ = 0.95), all estimators perform adequately, but at high multicollinearity (ρ = 0.999), MLE
exhibits instability, with a significant rise in error, whereas MRT and LIU provide more stable estimates.
Overall, MRT emerges as the most robust estimator under both censoring and multicollinearity, followed
closely by LIU. RIDGE benefits from regularization but does not match the performance of MRT and
LIU in extreme conditions. Conversely, MLE is the most vulnerable estimator, suffering considerable
performance degradation as censoring and multicollinearity intensify. These findings indicate that MRT
and LIU are the most reliable choices for handling challenging datasets characterized by high correlation
and censoring.

5 Applications to real datasets

5.1 Example 1: Mayotte social contact survey dataset

The information on social contacts was collected through cross-sectional surveys conducted by the Re-
gional Health Agency (ARS) of Mayotte. These surveys were conducted between October and December
2021 with the oral informed consent of the participants. Participants were randomly assigned a day of
the week to record each person they had come into contact with. In summary, only one person per house-
hold was invited to participate in the study. Paper diaries were handed out face-to-face to participants,
who were trained on how to fill them out. They were required to note each person contacted only once
in the diary. A contact was defined as either a physical contact (e.g., a handshake or kiss) or a two-way
conversation involving at least three words in the physical presence of another person, without physical
contact (a non-physical contact). Participants were also required to provide information on the age and
sex of each person contacted. If the exact age was not known, participants were asked to estimate the
corresponding age group. For each contact, participants had to indicate the location (home or outside
the home) and the average number of usual contacts with that person.

The sample for the survey in Mayotte was constructed through quota sampling based on age, sex,
and municipality, randomly selected from population registers, excluding individuals under 1 year of age.
Participants received a written invitation for a face-to-face interview. Ifnecessary, respondents or their
parents were visited at home and approached in a language other than French. During the interviews,
participants stated their age and were asked about the number of people living in their household,
excluding themselves, as well as the number of different people they conversed with during a typical week,
excluding household members. A total of 4670 participants responded and completed the questionnaire.

The survey journal classified participants into five age groups: [0-18], [19-24], [25-49], [50-64], and
[65+]. The journals also recorded basic socio-demographic information about the participants, including
employment status, education level, household composition, age, gender, etc. It should be noted that
during the interviews, responses from participants with high values (> 900 ) corresponded to special
cases. In this study, the training data concerns only values where the number of contacts is less than
or equal to 100. Although we carefully reviewed the listed variables and removed some clearly unusual
values, the data now consists of 4,015 observations. In this case, 50% of individuals had no contact. This
suggests a problem related to an excess of zeros.

In addition to the number of contacts, which is the dependent variable and has an excess of zero
values, the following information was available in the data and used as follows. The goal of the analysis
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is to assess whether age (X1), the number of household members under 18 years of age (X2), the number
of household members aged 19-24 years (X3), the number of household members aged 50-64 years (X4),
the number of household members aged 65 years and older (X5), household size (X6), and weight (X7)
all influence the dependent variable: (y) the number of contacts.

We calculated the condition index (CI) to check for potential multicollinearity within the data. The
CI is given by: CI =

√
max(λj)/min(λj) = 692.83 The high value of the CI indicates the presence

of strong multicollinearity among the independent variables. The correlation matrix of the regressions,
presented in Table 3, shows the correlation coefficients between the independent variables.

In the initial data, the response variable y is not censored. We chose to use it and artificially censor
y. This censorship involves truncating a proportion of the values of y according to a defined censorship
rate, such as 15% or 40%. The censorship is performed by generating thresholds based on zero-truncated
Poisson values, and all values exceeding these thresholds are considered censored. The average censorship
proportions for the sample of y are set to 0.15 and 0.4, respectively. The Zero-Inflated Poisson (ZIP)
regression model is used to estimate the number of contacts, taking into account the censored data.
The model is adjusted on a training dataset using the zeroinfl function from the pscl library. The
optimization of the penalty parameters, such as Ridge and Liu penalties, is done by cross-validation to
minimize the mean squared error (MSE). Once the models are adjusted, predictions are generated using
the estimated coefficients, and the performance of the different models is evaluated using error metrics,
such as MSE, MAE, and MSDE. These results allow for the comparison of model performances and
examination of the impact of artificial censorship. The adjusted coefficients and associated errors are then
stored for further analysis, with a final display of results for each censorship rate tested. The estimated
coefficients from the Maximum Likelihood (ML) estimator and shrinkage estimators are presented in
Table 4.

The results of different estimation methods, such as Maximum Likelihood Estimation (MLE), Ridge,
LIU, and MRT, were compared under various censoring conditions (none, 15%, and 40%). Three model
validation criteria were used: Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean
Squared Difference of Errors (MSDE). Regarding the estimated coefficients, the intercept remains rela-
tively stable despite the methods and censoring conditions, indicating robustness. For the explanatory
variables (X1 to X8), the coefficients vary slightly across the estimation methods, but the trends are
generally consistent, particularly for X1, which remains negative, and for X5, which shows a positive
correlation with the number of contacts, especially under 40% censoring. In terms of validation, the MSE
indicates that MRT performs the best without censoring, followed by RIDGE, with similar values at
15% and 40% censoring. For MAE, RIDGE and MRT are at the top, with RIDGE slightly excelling at
40% censoring. Regarding MSDE, both MRT and RIDGE provide the best performances, with a slight
advantage for RIDGE at 15% and 40% censoring. The introduction of censoring seems to improve the
models’ performance, particularly for RIDGE and MRT, which show notable reductions in errors. In
conclusion, RIDGE and MRT methods are the most effective for handling censored data, providing bet-
ter prediction accuracy and greater stability in the estimates, and the introduction of censoring appears
to have a beneficial effect, especially for these two methods.

5.2 Example 2: Environmental data

As an illustration, we analyze the pollutant emissions data described in [11]. There are three predictors,
namely: the average ozone concentration (O3), the daily air quality index (AQI), and the daily average
temperature (Tempmoy). The dataset exhibits a zero-inflation ratio of 0.53. We set C = 5 and C = 6
for this data, resulting in censoring rates of approximately 15% and 40%, respectively. The condition
index for this dataset was calculated to be 254.3948, which strongly indicates the presence of severe
multicollinearity among the explanatory variables. We randomly split the dataset into a training set of
size 80% and a test set of size 30%, and compare the results of four methods: MLE, Ridge, Liu, and
MRT. The cross-validation method was employed to select the optimal regularization parameters for
Ridge and Liu methods. Table 5 presents the estimated coefficients as well as the error values for each
of the four methods: MLE, Ridge, Liu, and MRT. The estimated coefficients for the different variables
(intercept, average ozone concentration O3, Air Quality Index (AQI), and average daily temperature
(Tempmoy) vary depending on the censorship rate and the estimator used. Without censorship (0%),
MLE provides more extreme coefficients than Ridge, LIU, and MRT, with the latter reducing the variance
of the estimates. LIU falls between MLE and Ridge, offering a trade-off between bias and variance. With
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15% censorship, the amplitude of the coefficients decreases, especially for MLE and LIU, while Ridge and
MRT maintain more stable estimates. At 40% censorship, MLE is the most affected, with sign inversions
for some coefficients, whereas Ridge and MRT remain more robust.

Regarding the evaluation of prediction errors using MSE, MAE, and MSDE, MRT and Ridge exhibit
the most stable performances with the lowest errors, while MLE and LIU show greater sensitivity to
data variations. When censorship reaches 40%, MRT maintains the best overall performance with the
lowest errors (MSE = 1.5402, MAE = 1.0895, MSDE = 0.6828), with Ridge being close in terms of
efficiency. Overall, MRT and Ridge appear to be the most effective estimators under censorship, while
MLE becomes unstable and LIU provides an intermediate alternative. Therefore, for better robustness
and accuracy, Ridge and MRT are recommended, especially in the presence of censored data.

Table 3: Correlation matrix for Mayotte social contact survey dataset

Regressors X1 X2 X3 X4 X5 X6 X7 X8

X1 1.0000
X2 -0.6786
X3 -0.6493 0.9525
X4 -0.6534 0.9489 0.9614
X5 -0.6553 0.9333 0.9592 0.9560
X6 -0.6292 0.9207 0.9541 0.9448 0.9633
X7 -0.6227 0.9155 0.9534 0.9480 0.9637 0.9903
X8 -0.5684 0.3648 0.3488 0.3475 0.3483 0.3390 0.3377 1.0000

Figure 1: Boxplot of the MLE, Ridge, Liu, and MRT estimators in the presence of censorship for the
error metrics provided in Table 4
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Figure 2: Boxplot of the MLE, Ridge, Liu, and MRT estimators in the presence of censorship for the
error metrics provided in Table 5

6 Conclusions and future research directions

Zero-inflated (ZI) models, originally introduced by [19], address datasets with an excess of zeros, a
limitation of traditional count models such as the Poisson and Negative Binomial distributions. In many
practical applications, data are further complicated by censoring—either due to observational limits or
detection thresholds—which, if ignored, can result in biased parameter estimates [19]. This has motivated
the development of the Right-Censored Zero-Inflated Poisson (RCZIP) Regression Model, which offers a
distinct advantage over standard zero-inflated approaches.

Despite the widespread use of maximum likelihood estimation (MLE) in RCZIP models, its perfor-
mance is notably compromised in the presence of correlated regressors. To address this challenge, we have
developed and investigated regularization methods, including both the conventional ridge regression and
a novel modified ridge-type (MRT) estimator. The integration of these regularization techniques into
the RCZIP model framework serves to stabilize parameter estimates by mitigating the adverse effects of
multicollinearity, while preserving the predictive utility of correlated predictors.

Our extensive numerical simulations and empirical analyses provide compelling evidence of the su-
perior performance of the MRT estimator over both the MLE and other regularization approaches. We
evaluated the model under varying degrees of censoring (0%, 15%, and40%) and multicollinearity (moder-
ate and high), and validated the methods using two real-world datasets. In these applications, data were
partitioned into 80% training and 20% test sets, with regularization parameters optimally selected via
cross-validation. Performance was assessed using mean squared error, mean absolute error, and median
squared prediction error, with results consistently demonstrating reduced estimator variance, enhanced
model fit, and robust predictive capabilities.

The promising outcomes of this study suggest that regularization, particularly through the proposed
MRT estimator, offers a reliable and effective solution for managing multicollinearity in RCZIP regression
models. Future research should consider extending this framework by incorporating adaptive ridge and
L1-norm regularization techniques to further enhance model scalability and efficiency in high-dimensional
settings.
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