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Abstract

This paper introduces the Broken Adaptive Liu-Type (BALT) estimator, a novel penalized regression
approach designed to achieve accurate parameter estimation and effective variable selection in high-
dimensional settings. By integrating adaptive shrinkage with a broken weighting mechanism, BALT
enables differential regularization across components of the parameter space, facilitating both sparsity
and stability. The estimator is derived from the Liu-type family and incorporates a flexible structure
that adaptively targets relevant predictors while shrinking negligible coefficients toward zero. We
establish the large-sample properties of BALT, including its oracle property and grouping effect, under
general non-orthogonal conditions. Extensive simulation studies and real-data applications, including
prostate cancer, electricity consumption, and riboflavin gene expression, demonstrate that BALT
consistently achieves lower prediction error and more parsimonious models than existing methods
such as Lasso, Elastic Net, Ridge, and Broken Adaptive Ridge. These results highlight BALT as a
powerful and interpretable tool for sparse modeling in complex, high-dimensional regression problems.

Keywords: Sparse estimation; Variable selection; Biased regression; Liu-type estimator; Oracle property;
High-dimensional inference.

1 Introduction

Linear regression models are fundamental tools in statistical analysis, widely applied across diverse fields
such as social sciences, biology, economics, and engineering [30]. The primary objective of these models
is to establish a linear relationship between a dependent variable y and a set of explanatory variables
represented by the design matrix X ∈ Rn×p, where n denotes the number of observations and p the
number of variables.

However, when certain explanatory variables are highly correlated, a phenomenon known as multi-
collinearity the matrixX⊤X becomes singular or nearly singular. This non-invertibility or ill-conditioning
undermines the estimation of coefficients using the Ordinary Least Squares (OLS) method. Specifically,
a non-invertible X⊤X matrix prevents the unique calculation of regression coefficients, leading to model
instability and unreliable estimates.
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Biased estimators have been developed to mitigate these effects. Ridge regression, introduced by
Hoerl and Kennard [19], was among the first alternatives to incorporate an ℓ2 penalty to stabilize es-
timates. While it reduces variance, it does not ensure strict variable selection. The Liu estimator [23],
an extension of Ridge regression, integrates an adjustable bias structure that enhances stability in the
presence of multicollinearity. Nonetheless, this approach does not guarantee sparsity in high-dimensional
environments, limiting its effectiveness for interpretation and prediction.

Simultaneous variable selection and parameter estimation play a crucial role in statistical model-
ing and its broad range of applications. A straightforward and intuitive strategy for variable selection
involves the use of ℓ0-penalized regression, which imposes a penalty based on the number of selected vari-
ables. This approach is closely linked to traditional model selection criteria such as Akaike Information
Criterion (AIC) [1], and Bayesian Information Criterion (BIC) [3]. The ℓ0 penalty has been shown to
possess desirable theoretical properties, offering optimal performance in both variable selection and pa-
rameter estimation. However, the associated optimization problem is inherently nonconvex and requires
an exhaustive search over all possible subsets of variables a task that is NP-hard and computationally
prohibitive even for moderately sized datasets. Furthermore, solutions obtained via this method may
exhibit instability in variable selection.

To address these challenges, the ℓ1-penalized regression method, known as the Lasso, has emerged
as a widely adopted alternative. Lasso enjoys consistency in variable selection, although it falls short in
delivering consistent parameter estimation. Over the past two decades, significant research efforts have
been directed towards refining the Lasso through various extensions of the ℓ1 penalty [2, 5–7, 9, 32, 33].
These advanced techniques aim to achieve both selection consistency and estimation consistency, thereby
enhancing the reliability and interpretability of statistical models.

In this context, the Broken Adaptive Ridge (BAR) method has been recently introduced [4]. It
combines the strengths of ℓ0 penalties (promoting sparsity) and ℓ2 penalties (stability against multi-
collinearity) by adaptively adjusting penalty weights across different model components. This “broken”
structure allows for the strict nullification of certain coefficients while stabilizing others, offering a more
flexible and effective solution.

Building upon this, our work proposes a new class of biased estimators: the Broken Adaptive Liu-
Type Estimator (BALT). Inspired by Liu-type estimators, BALT introduces two distinct bias parameters
within a broken adaptive structure, enabling fine regulation of multicollinearity and automatic variable
selection. The method relies on an orthogonal decomposition of the design matrix, separating components
associated with large and small eigenvalues the latter often being the source of instability in the presence
of multicollinearity.

The BALT approach aims to simultaneously improve parameter estimation and variable selection in
high-dimensional contexts. It benefits from a rigorous theoretical framework, demonstrating asymptotic
properties such as consistency, relative efficiency, and the oracle property. Extensive simulations, compar-
ing BALT to existing methods like Ridge, Lasso, BAR, and Elastic Net, highlight the superiority of our
approach in scenarios characterized by strong multicollinearity and a small number of relevant variables.

In summary, this work contributes to the ongoing efforts to enhance linear models’ performance in
high-dimensional settings. The BALT estimator, with its innovative architecture based on adaptive and
differentiated weighting, represents a significant advancement in variable selection, estimation stability,
and model interpretability in complex contexts. In Section 2, we review the estimation and variable
selection methods. In Section 3, under certain regularity conditions, we state our main large-sample re-
sults for BALT, namely the oracle and grouping properties for the general non-orthogonal case. Section
4 illustrates the simulation results. Section 5 presents applications involving prostate cancer data, elec-
tricity consumption data, and data on the composition of bituminous binder and surface free energy.
Concluding remarks are given in Section 6. Technical proofs are postponed to an Appendix.

2 Estimation and variable selection methods

The linear regression model (LRM) expresses the response variable y as a linear combination of one or
more predictors z. The general LRM in matrix form is given by:

y = Zθ + ε, (1)
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where y ∈ Rn is the vector of responses, Z ∈ Rn×p is the design matrix of predictors, θ ∈ Rp is the vector
of the true regression coefficient and ε ∈ Rn is the vector of error terms with mean zero and variance
σ2In. The design matrix Z is standardized so that

∑n
i=1 zij/n = 0,

∑n
i=1 z

2
ij/n = 1 for j = 1, 2, . . . , p and

the response vector y is centered to have mean zero
∑n

i=1 yi/n = 0. This allowed us to fit a regression
model without the intercept term. The Least squares estimator (LSE) is obtained by solving the following
optimization problem

θ̂LS = arg min
θ∈Rp

{∥y − Zθ∥22} = (ZTZ)−1ZT y. (2)

The least squares estimator (LSE) is an unbiased estimator with minimum variance in the absence
of multicollinearity. However, when multicollinearity is present, the variance of the LSE increases sig-
nificantly, leading to large coefficient estimates [8]. In addition, in high-dimensional settings, where the
number of predictors exceeds the number of observations, the design matrix Z is not of full rank, resulting
in the absence of a unique solution [10, 11].

Penalized regression methods serve as effective alternatives to LSE by mitigating issues related to
large coefficient estimates and multicollinearity. These methods impose constraints on the magnitude of
the coefficient estimates of θ in model (1), leading to more stable solutions. The penalized coefficient
estimates are obtained by solving the following optimization problem:

θ̂(λ, ν) = arg min
θ∈Rp

{∥y − Zθ∥22 + λpν(θ)}, (3)

where pν(·) is the penalization function that describes the form of penalization and λ is a tuning parameter
that controls the magnitude of the coefficient estimates of θ. The ridge estimator represents a form of
regularization known as ℓ-norm penalization, which introduces a constraint on the magnitude of the
regression coefficients to improve estimation stability and mitigate multicollinearity (Hoerl and Kennard,
1970). It is obtained by solving the following optimization problem

θ̂(r) = argmin
θ

{
∥y − Zθ∥2 + λn

pn∑
j=1

θ2j

}
= (ZTZ+ λnI)

−1ZTy, (4)

where λn ≥ 0 is a regularization parameter. Ridge regression effectively addresses multicollinearity and
provides unique coefficient estimates in high-dimensional settings. However, it does not induce sparsity,
as none of its estimates are shrunk to zero, making interpretation challenging. To overcome this limita-
tion, Dai et al. [4] introduced the broken adaptive ridge (BAR) regression, a sparse extension of ridge
regression, with the objective function given by:

θ̂BAR = argmin
θ

{
∥y − Zθ∥2 + λn

pn∑
j=1

θ2j

θ̂2j

}
= (ZTZ+ λnD(θ̂))−1ZTy, (5)

where D(θ̂) = diag(θ̂−2
1 , . . . , θ̂−2

pn
).

Despite its advantages, the formulation in equation (5) may suffer from numerical instability, as

division by small θ̂2j values can lead to excessive penalization. A common remedy is to introduce a small

perturbation δ > 0 to D(θ̂), ensuring numerical stability. Alternatively, equation (5) can be reformulated
as:

θ̂BAR = Γ(θ̂)ZT (ZT (θ̂)Z(θ̂) + λnIn)
−1ZT (θ̂)y, (6)

where Γ(θ̂) = diag(θ̂1, . . . , θ̂pn
) and Z(θ̂) = ZΓ(θ̂).

This alternative formulation preserves numerical stability without requiring an explicit perturbation
term, making it a robust approach for high-dimensional regression problems. Liu [23], Ozkale and Kaci-
ranlar [31] and Liu [24] developed the Liu-type estimator (LTE) as a competitive alternative to ridge
regression. In this study, the LTE is defined as follows:

θ̂LT = argmin
θ

{
∥y − Zθ∥2 + λn∥θ − (−d)θLS∥2

}
= (ZTZ+ λnIn)

−1(ZTZ− λd)θLS (7)

LTE exhibit similar performance to ridge regression, but cannot induce sparsity and fails to pro-
vide a unique solution in high-dimensional settings. Therefore, in this study, we propose the Broken
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Adaptive Liu-Type Estimator (BALT), which is designed to induce sparsity and remain effective in high-
dimensional contexts. Hence, the penalization functions is defined as follows: For any integer t ≥ 1,
define

θ̂t = f(θ̂t−1), (8)

where

f(θ̃) = argmin
θ

{
∥y − Zθ∥2 + λ∥θ − (−d)θ̃jθ

LS∥2

θ̃2j

}
= (ZTZ+ λnθ̃

−2
j In)

−1(ZTZ− λdθ̃−1
j )θLS . (9)

The broken adaptive Liu-type (BALT) estimator is defined as

θ̂∗ = lim
t→∞

θ̂(t).

To ensure numerical stability, we rewrite (9) as follows:

f(θ̃) = (ZTD(θ̃)Z+ λnIn)
−1(ZTD(θ̃)Z− λndF (θ̃))θLS , (10)

where F (θ̃) = diag(θ̃j) and D(θ̃) = diag(θ̃2j ).

Following Dai et al. [4], we assume that ZTZ/n = In. Then for each j ∈ {1, ..., n}, the jth component
of f(θ̃) defined by (9) is as follows:

fj(θ̃j) =
(θ̃2

j−
dλnθ̃j

n )

(θ̃2
j+

λn
n )

θ̂LS
j where θLS

j = n−1ZT y.

Remark 1 (Orthogonal Case). It is important to examine the orthogonal case, which admits a closed-

form expression for the BALT estimator. Without loss of generality, assume that θLSi > 0 and 0 ≤ θ̂λdj ≤
θ̂LS
j for every integer k. Also, note that the map

z 7→ f(z) =
(z2 − λnd

n z)θ̂LS
j

(z2 + λn/n)

is increasing in z on (0,∞). If we set ϕ(z) = f(z) − z and fixed the value of n, λ and d, we have the
following observations:

1. If (θ̂LS
j )2 < 4λn

n (1 + dθ̂LS
j ), then ϕ(z) < 0. Therefore, θ̂

(t+1)
j < θ̂

(t)
j for all t and θ̂∗j = 0.

2. If (θ̂LS
j )2 = 4λn

n (1 + dθ̂LS
j ), then ϕ(z) ≤ 0. Therefore, θ̂

(t+1)
j ≤ θ̂

(t)
j for all t. Then,

θ̂∗j =

0, if θ̂
(0)
j <

θ̂LS
j

2 ,
θ̂LS
j

2 , otherwise.

3. If (θ̂LS
j )2 ≥ 4λn/n(1 + dθLS

j ), then ϕ(x) ≥ 0 when x ∈ [x1, x2], where

x1 =
θ̂LSj

2
−

√
(θ̂OLS

j )2

4
− λn

n
(1 + dθ̂LS

j )

and

x2 =
θ̂LSj

2
+

√
(θ̂OLS

j )2

4
− λn

n
(1 + dθ̂LS

j )

and ϕ(x) < 0 otherwise. As a result,

θ̂∗j =

0, if θ̂
(0)
j < z1,

θ̂LS
j

2 +

√
(θ̂OLS

j )2

4 − λ
n (1 + dθ̂LS

j ), otherwise.
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The BALT estimator typically converges to a unique solution, with its convergence properties being
influenced by the chosen initial value. In this work, we employ the ridge estimator as the initial value.
As a result, the BALT algorithm converges for the ith component to the following limit:

θ̂∗j =


0, if θ̂

(LS)
j ∈ (−2

√
λn/n(1 + dθ̂LS

j )),

θ̂LS
j

2 +

√
(θ̂OLS

j )2

4 − λn

n (1 + dθ̂LS
j ), if θ̂

(LS)
j /∈ (−2

√
λn/n(1 + dθ̂LS

j )).
(11)

Figure 1: Thresholding functions of BAR, BALT, LASSO and Enet.

Figure 1 illustrates the thresholding functions for BALT (as defined in (11)), BAR, Lasso, and Elastic
Net. The plots reveal distinct shrinkage behaviors inherent to each regularization method. In particular,
the Lasso and Elastic Net functions exhibit smooth, gradual transitions around the threshold, reflecting
their continuous soft-thresholding operations. In contrast, the BAR and BALT methods display more
abrupt, piecewise changes, inducing exact zeros for coefficients below a specified threshold. Notably,
while the BALT function behaves similarly to BAR in enforcing sparsity, its formulation includes an
additional tuning parameter that allows for a more flexible adjustment of the shrinkage intensity. This
added flexibility can be advantageous in accommodating varying degrees of sparsity and improving model
performance in high-dimensional settings.

3 Large-sample properties of BALT

3.1 Oracle Property

In this section, we investigate the oracle properties of the BALT estimator under a general framework
without imposing the condition that the design matrix must be orthogonal.

Let θ0 = (θ01, . . . , θ0pn)
⊤ represent the true parameter vector, where the dimensionality pn increases

with the sample size but satisfies pn < n. For clarity, decompose θ0 as θ0 = (θ⊤01, θ
⊤
02)

⊤, where θ01 ∈ Rqn

contains the nonzero elements and θ02 ∈ Rpn−qn consists of zero coefficients. We assume θ01 ̸= 0 and
θ02 = 0. Let θ̂∗ = (θ̂∗⊤1 , θ̂∗⊤2 )⊤ denote the BALT estimator of θ0. Define Z1 = (z1, . . . , zqn), Σn1 =
Z⊤

1 Z1/n, and Σn = Z⊤Z/n.
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The following assumptions are necessary to derive the asymptotic properties of the BALT estimator.

(C1) The random errors ε1, . . . , εn are independent and identically distributed with mean zero and finite
variance 0 < σ2 < ∞.

(C2) There exists a constant C > 1 such that for all n, the eigenvalues of Σn are bounded: 0 < 1/C <
λmin(Σn) ≤ λmax(Σn) < C < ∞.

(C3) Define b0n = min1≤j≤qn |θ0j | and b1n = max1≤j≤qn |θ0j |. Then as n → ∞, we require that pnqn/
√
n →

0, ξnb1n/
√
n → 0, (pn/n)

1/2/b0n → 0, and λnb1n(qn/n)
1/2/b20n → 0.

Theorem 1 (Oracle Property). Suppose that assumptions (C1)–(C3) are satisfied. For any vector an ∈
Rqn with ∥bn∥ ≤ 1, define the scaling quantity as s2n = σ2a⊤nΣ

−1
n1 an. Consider the function

f(α) =
(
ZT

1 Z1 + λnD1(α))
)−1

(
Z⊤

1 Z1 − λnddiag(θ̃
−1
1 , . . . , θ̃−1

qn )
)
(ZT

1 Z1)
−1ZT

1 y,

where d is a tuning parameter. Then, the fixed point of f(θ̃) exists and is unique.
Moreover, with probability approaching one as n → ∞:

(i) The BALT estimator θ̂∗ =
(
θ̂∗⊤
1 , θ̂∗⊤

2

)⊤
exists and is unique, where θ̂∗

2 = 0 and θ̂∗
1 is the unique fixed

point of f(α);
(ii) The scaled error converges in distribution:

√
ns−1

n a⊤n (θ̂
∗
1 − θ01)

d−→ N (0, 1).

Theorem 2 (Grouping Property of BALT). Assume that the columns of the design matrix Z are stan-

dardized such that
∑n

k=1 zik = 0 and ∥zi∥22 = 1 for all i ∈ {1, . . . , p}. Let θ̂∗ be the BALT estimator
given by Equation (9). Then, with probability tending to 1, for any i < j,

|θ̂∗−1
i − θ̂∗−1

j | ≤ 1

λn
∥y∥

√
2(1− ρij) ·

∣∣∣∣∣ θ̃j

1 + dθ̃j
− θ̃i

1 + dθ̃i

∣∣∣∣∣ , (12)

provided that θ̂∗i · θ̂∗j ̸= 0, where ρij = zTi zj is the sample correlation between zi and zj, and θ̃i, θ̃j are
the reweighting parameters associated with the BALT penalty.

4 Simulation

In this section, we present a simulation study to evaluate the predictive performance and variable selection
capabilities of BALT in comparison with BAR, Lasso, Elastic Net, Ridge, and Adaptive Lasso. The
simulated data follow the model

y = Zθ + σ ϵ, ϵ ∼ N (0, 1), (13)

where y is the response vector, Z is the design matrix, θ is the vector of regression coefficients, and σ
denotes the noise level.

We consider five distinct scenarios, mostly adapted from the BAR study [4]. Scenario 3 is specifi-
cally designed to explore grouped variable behavior, highlighting the potential advantages of BALT in
structured settings.

To evaluate each method, we use k-fold cross-validation to approximate the train/validation/test
split. For each replicate, data are partitioned into k folds, where each fold serves once as validation
while the remaining folds form the training set. Regularization parameters are selected via grid search
to minimize the mean squared error (MSE) on the validation set.

Once optimal hyperparameters are determined, we re-fit the models on the full dataset and assess
their performance using several criteria: prediction accuracy (MSE and mean absolute error (MAE))
and variable selection quality via the false positive rate (FPR) and false negative rate (FNR). A low
FPR indicates few irrelevant variables are selected, while a low FNR implies strong retention of relevant
variables.

We aggregate results over 50 replicates to ensure robustness across all methods and scenarios. The
details for each scenario are outlined below:
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• Scenario 1: We generate 50 datasets under two conditions: one with p = 10 and another with
p = 50 predictors, both with n = 100 observations. The true coefficient vector is defined as β =
(2,−3, 0, 0, 4, 0, 0, . . . , 0), and the error term follows σ = 1. To examine the influence of correlation, we
fix the pairwise correlation structure via Σkj = r|k−j|, r ∈ {0.5, 0.7, 0.9}. Results are presented in
Table 1.

• Scenario 2: This scenario mirrors Scenario 1 but introduces additional weak signals: β =
(2, −3, 0, 0, 4, 0.2, −0.3, 0, 0, 0, 0.4, 0, . . . , 0). Results are shown in Table 2.

• Scenario 3: This setting introduces grouped variables. Let p = 9, and define the true coefficient
vector as β0 = (2, 2, 0.4, 0.4, 0, 0, 0, 0, 0), with responses generated by y = Zθ + ε, where
ε ∼ N (0, 0.22In).
The design matrix is constructed as follows:

zi = x1 + ei, x1 ∼ N (0, 302In), i ∈ {1, 2, 3},
zi = x2 + ei, x2 ∼ N (0, 302In), i ∈ {4, 5, 6},
zi ∼ N (0, 302In), i ∈ {7, 8, 9},

where ei ∼ N (0, 0.12In). Predictors z1 to z3 and z4 to z6 form two latent groups, with within-group
correlation of 1 and between-group correlation of 0.1. Sample size is n = 200. Results are summarized
in Table 3.

• Scenario 4 (High-Dimensional): We generate 50 datasets with n = 50 and p = 100. The true
coefficient vector is β′ = (1, 1, 1, 1, 1, 0, . . . , 0), with σ = 3 [12]. Covariance is defined as Σkj = r|k−j|

for r = 0.7 and 0.9. Results appear in Table 4.
• Scenario 5: Another high-dimensional case with n = 50, p = 100, and true coefficient vector β =
(2, −3, 0, 0, 4, 0.2, −0.3, 0, 0, 0, 0.4, 0, . . . , 0), drawn from N (0,Σ) with Σkj = 0.5|k−j|. Results
are in Table 5.

Results: In Scenario 1, BALT consistently outperformed other methods, mostly in terms of MSE,
while promoting model sparsity. BAR achieved the best FPR and FNR scores, with BALT a close second.
This performance remained stable across different values of p and r. Scenario 2 showed a similar pattern,
despite the increased number of nonzero coefficients. While Lasso, Elastic Net, and Ridge improved
slightly in FPR and FNR, particularly at higher r values, BAR and BALT remained competitive in MSE
and MAE. Their alternating performance across metrics reflects structural similarities in their algorithms.
Notably, BALT consistently attained the smallest FPR, demonstrating exceptional parsimony without
sacrificing estimation precision. In Scenario 3, BAR achieved the sparsest models (FPR = 0.1133),
followed by BALT (FPR = 0.1400), though both exhibited relatively high FNRs (0.6267 and 0.6700,
respectively). Ridge regression minimized FNR (0.0000) but included all predictors (FPR = 1.0000).
Lasso and Elastic Net showed balanced FPR and FNR values but were still outperformed in terms of
predictive accuracy by BAR and BALT. Scenario 4 results (Table 4) confirmed BALT’s robustness in
high-dimensional settings. It attained the lowest MSE (7.9453 for r = 0.7, 8.4418 for r = 0.9) and very
low FPRs (0.0162, 0.0095). BAR followed closely in MSE and FPR but had slightly higher FNRs. Lasso
and Enet performed moderately, while Ridge again achieved FNR = 0.0 with FPR = 1.0, reflecting
severe overselection. In Scenario 5, BALT maintained strong performance across all metrics. BAR slightly
surpassed BALT in MAE and FPR, while Lasso and Enet achieved lower FNRs. Overall, BAR and BALT
demonstrated the most favorable trade-offs in both sparse and grouped settings.
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Table 1: Performance comparison for different methods under varying r and p for
scenario 1.

p = 10 p = 50
r Method MSE MAE FPR FNR MSE MAE FPR FNR

r = 0.5

Lasso 1.1158 0.0726 0.5214 0 1.1415 0.0272 0.2294 0
Ridge 1.3085 0.2168 1 0 1.0047 0.1615 1 0
ElasticNet 1.0952 0.0846 0.6900 0 1.1308 0.0398 0.3589 0
BAR 0.9534 0.0372 0.0529 0 0.9336 0.0079 0.0085 0
BALT 0.9524 0.0375 0.0557 0 0.9222 0.0096 0.0153 0

r = 0.7

Lasso 1.1063 0.0914 0.5600 0 1.1251 0.0341 0.2602 0
Ridge 1.4495 0.3308 1 0 1.1817 0.1988 1 0
ElasticNet 1.0833 0.1112 0.7143 0 1.0947 0.0526 0.4102 0
BAR 0.9500 0.0454 0.0614 0 0.9321 0.0094 0.0100 0
BALT 0.9478 0.0486 0.0843 0 0.9244 0.0106 0.0151 0

r = 0.9

Lasso 1.1009 0.1581 0.5386 0 1.1922 0.1612 0.1783 0.3200
Ridge 1.7034 0.6173 1 0 1.3892 0.2674 1 0
ElasticNet 1.0834 0.1955 0.7157 0 1.2049 0.2116 0.2768 0.2600
BAR 0.9519 0.0783 0.0629 0 1.0622 0.1219 0.0113 0.5100
BALT 0.9489 0.0858 0.0914 0 1.0519 0.1539 0.0472 0.5733

Table 2: Performance comparison for different methods under varying r and p for
scenario 2.

p = 10 p = 50
r Method MSE MAE FPR FNR MSE MAE FPR FNR

0.5

Lasso 1.0725 0.0946 0.7375 0.0333 1.1202 0.0376 0.2659 0.1667
Ridge 1.3141 0.2176 1 0 1.0026 0.1567 1.0000 0
ElasticNet 1.0357 0.0980 0.8125 0.0167 1.0938 0.0475 0.3830 0.0750
BAR 0.9266 0.0984 0.3375 0.1167 0.8839 0.0232 0.0307 0.2667
ALIU 0.9240 0.0966 0.3000 0.1167 0.9269 0.0229 0.0205 0.3250

0.7

Lasso 1.0798 0.1276 0.7750 0.0917 1.1041 0.0498 0.3205 0.1417
Ridge 1.4417 0.3160 1 0 1.1587 0.1953 1 0
ElasticNet 1.0443 0.1301 0.8125 0.0583 1.0722 0.0612 0.4341 0.1000
BAR 0.9246 0.1213 0.4125 0.1750 0.9419 0.0220 0.0148 0.3583
BALT 0.9438 0.1171 0.2625 0.2417 0.9387 0.0221 0.0136 0.3500

0.9

Lasso 1.0801 0.1977 0.5875 0.1333 1.0867 0.0665 0.2739 0.2500
Ridge 1.6723 0.6277 1 0 1.4368 0.2531 1 0
ElasticNet 1.0495 0.1911 0.7375 0.0833 1.1107 0.0917 0.4025 0.1750
BAR 0.9349 0.1865 0.2125 0.2833 0.9645 0.0330 0.0519 0.4667
BALT 0.9375 0.1827 0.1750 0.3167 0.9262 0.0364 0.0261 0.4500

Table 3: Performance comparison of methods
under scenario 3.

Method MSE MAE FPR FNR

Lasso 27.0677 0.8634 0.5133 0.4300
Ridge 27.0772 0.2537 1.0000 0.0000
ElasticNet 27.1991 0.5788 0.5800 0.2267
BAR 24.3420 1.1254 0.1133 0.6267
BALT 24.5289 1.0680 0.1400 0.6700

Table 4: Performance comparison for different methods under varying ρ values
for scenario 4.

ρ = 0.7 ρ = 0.9
Method MSE MAE FPR FNR MSE MAE FPR FNR

Lasso 10.7685 0.0483 0.0752 0.1680 10.0865 0.0574 0.0577 0.3480
Ridge 18.2374 0.0802 1 0 17.8263 0.0738 1 0
ElasticNet 10.7922 0.0478 0.1038 0.0600 10.3209 0.0466 0.0819 0.1000
BAR 8.2245 0.0668 0.0126 0.6520 8.9168 0.0721 0.0038 0.7600
BALT 7.9453 0.0625 0.0162 0.6080 8.4418 0.0712 0.0095 0.6960
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Table 5: Performance comparison of methods
under scenario 5.

Method MSE MAE FPR FNR

Lasso 1.2509 0.0347 0.1755 0.2500
Ridge 19.1155 0.1358 1 0
ElasticNet 1.6012 0.0484 0.2255 0.2333
BAR 0.9820 0.0135 0.0064 0.4500
BALT 0.8953 0.0166 0.0160 0.4333

5 Examples

In this section, we examine the predictive performance of five regularized regression estimators: Ridge,
Lasso, Elastic Net (E-net), Broken Adaptive Ridge (BAR), and the proposed estimator, Broken Adaptive
Liu-type (BALT). The evaluation is conducted using three benchmark datasets that have been widely
employed in related studies on regularization methods.

The predictors were standardized such that

1

n

n∑
i=1

z2ij = 1, for j = 1, 2, . . . , p,

and the response variable was centered. Each data set was partitioned into training and testing subsets,
with 80% of the observations used for training and the remaining 20% reserved for testing. The fitting
of the model and the selection of parameters were performed using a five-fold cross-validation on the
training data. Specifically, the tuning parameters were selected from a discrete grid ranging from 0 to 50
for lambda, -10 to 10 for d and the optimal value for each model was chosen based on the minimization
of the average cross-validated mean squared error (MSE).

Once the optimal tuning parameter was identified, the corresponding model was refitted to the entire
training set and its coefficients were used to predict the response in the test set. The generalization
performance of each estimator was evaluated using the following metrics:

• Mean Squared Prediction Error (MSPE):

MSPE =
1

ntest

ntest∑
i=1

(yi − ŷi)
2
,

where yi and ŷi are the observed and predicted values, respectively, and ntest is the number of test
observations.

• Mean Absolute Error (MAE):

MAE =
1

ntest

ntest∑
i=1

|yi − ŷi| .

In addition to prediction accuracy, we also evaluated model sparsity by recording the number of
active variables (i.e., non-zero coefficients) selected by each estimator. This provides further insight into
the ability of each method to perform variable selection and control the complexity of the model.

5.1 Example I: Prostate Cancer Data

The first data set used in this study involves clinical measurements related to prostate cancer. It is used
to model the relationship between the level of prostate-specific antigen (PSA) and several explanatory
variables obtained from male patients scheduled for radical prostatectomy [4, 13]. The objective is to
understand how various clinical features influence PSA levels.

The regression model is formulated as follows:

yi = θ0 + θ1zi1 + θ2zi2 + · · ·+ θ8zi8 + ϵi, i = 1, . . . , 97, (14)
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where yi denotes the log-transformed PSA level for the i-th individual, and the predictors xij are defined
as:

• zi1: Logarithm of cancer volume
• zi2: Logarithm of prostate weight
• zi3: Patient’s age in years
• zi4: Natural logarithm of benign prostatic hyperplasia volume
• zi5: Indicator of seminal vesicle invasion
• zi6: Logarithm of capsule penetration
• zi7: Gleason score
• zi8: Percentage of biopsy cores with a Gleason score of 4 or 5

Table 6: Comparison of coefficient estimates and performance met-
rics across models using prostate data

Predictors/COEF Ridge Lasso Elastic Net BAR BALT
lcavol 0.4880 0.5147 0.4974 0.5601 0.5434
lweight 0.3163 0.1230 0.1121 0.4588 0.4587
age -0.0038 0.0179 0.0188
lbph 0.0821
svi 0.2674 0.6032 0.6102
lcp 0.0394
gleason 0.1131
pgg45 0.0031 0.0069 0.0072
MSPE 0.7089 0.7792 0.7850 0.7077 0.7043
MAE 0.5518 0.6010 0.6036 0.5642 0.5640
Active Set Size 8 4 4 3 3
Lambda 19.2727 0.1597 0.1997 0.56 0.07
d 35

Figure 2 displays the coefficient trajectories for four regularization methods BAR, BALT, Lasso,
and Elastic Net—plotted as a function of the normalized ℓ1 norm, i.e. ||β||1/max ||β||1. These paths
provide valuable insights into the dynamics of variable selection and shrinkage behavior as the regular-
ization strength is varied. BAR reveals a gradual evolution of the coefficient paths, indicating a relatively
smooth transition in the inclusion of variables. Key predictors such as lcavol, lweight, and svi emerge
early and maintain prominence throughout the path. The stability and interpretability of these tra-
jectories affirm the robustness of BAR in capturing the essential structure of the data with moderate
regularization. BALT exhibits more adaptive behavior, with sharper transitions and earlier activation
of critical variables. The coefficient paths show a high degree of shrinkage for weaker predictors, while
allowing dominant variables to reach larger magnitudes. This confirms BALT’s flexibility and strength
in selectively shrinking noise while preserving signal, enabled by its adaptive penalization scheme and
the tuning parameter d. The abrupt transitions suggest strong prior adaptivity that emphasizes sparsity
and parsimony.

The bottom-left panel shows that Lasso initiates variable inclusion at varying stages, with dominant
predictors like lcavol entering early. However, some coefficients plateau prematurely, reflecting Lasso’s
tendency to overshrink when predictors are correlated. Additionally, Lasso fails to maintain stability in
the presence of multicollinearity, often excluding informative variables in favor of those more weakly cor-
related with others. The bottom-right panel demonstrates that Elastic Net mitigates Lasso’s limitations
by allowing smoother transitions and incorporating more variables, thanks to its mixed ℓ1-ℓ2 penalty.
However, this comes at the cost of slightly reduced sparsity and interpretability. The simultaneous acti-
vation of correlated predictors implies that Elastic Net is particularly useful in high-dimensional settings,
albeit with less parsimony than BALT or BAR.

Overall, BALT and BAR offer more stable and interpretable coefficient paths, aligning with their
favorable predictive performance shown earlier. BALT’s sharper transitions and aggressive regularization
make it highly suitable for sparse signal recovery. In contrast, Lasso and Elastic Net, while effective, may
underperform in settings with complex correlation structures.
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Figure 2: The coefficient paths of the BAR, BALT, lasso, and elastic net for the prostate data as a
function of ∥β∥1/max ∥β∥1

Table 6 presents the coefficient estimates, predictive performance metrics, and model complexity in-
dicators for five regression estimators—Ridge, Lasso, Elastic Net, BAR, and BALT applied to a
prostate cancer dataset. This comparative analysis highlights the trade-offs between predictive accu-
racy, model sparsity, and interoperability. Among the evaluated methods, BALT achieves the lowest
mean squared prediction error (MSPE = 0.7043), indicating superior generalization performance. This
is closely followed by BAR, which also outperforms the conventional estimators such as Lasso and
Elastic Net. The slightly higher MSPE values for Lasso (0.7792) and Elastic Net (0.7850) suggest that
their regularization mechanisms may be suboptimal in this setting, potentially due to correlated predic-
tors or weak signal strength. Both BALT and BAR select only three predictors—lcavol, lweight, and
svi—highlighting their capacity for effective variable selection and highly interpretable offering models.
This is particularly beneficial in clinical or policy applications where simplicity and clarity are essential.
In contrast, Ridge regression retains all eight predictors due to the nature of the ℓ2 penalty, which, while
preventing overfitting, results in less interpretable models. Lasso and Elastic Net strike a middle ground
with four active predictors but fail to capture svi, a key variable retained by both BALT and BAR,
which may partially explain their reduced performance.

The values of the regularization parameter (λ) further elucidate the behavior of each method. Ridge
requires a high level of penalization (λ = 19.27), leading to uniform shrinkage. In contrast, BALT achieves
optimal performance with a small λ = 0.07 and a large additional parameter d = 35, enabling more
flexible and targeted regularization. This adaptivity is crucial in settings with noisy or high-dimensional
features, where uniform penalization risks underfitting important variables or overfitting noise.
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5.2 Example II: Electricity dataset

The Electricity dataset contains cost function data for 145 US electricity producers in 1955, with an
additional 14 observations representing aggregate statistics [14]. For statistical analysis, only the first
145 observations should be used. The data set comprises eight variables:

• cost: Total production cost.
• output: Total output of electricity.
• labor: Wage rate of labor.
• laborshare: Cost share for labor.
• capital: Capital price index.
• capitalshare: Cost share for capital.
• fuel: Fuel price.
• fuelshare: Cost share for fuel.

Table 7: Comparison of Coefficients and Metrics Across Methods using
Electricity Data

Predictors/COEF Ridge Lasso Elastic net BAR BALT
output 17.5176 18.0407 18.7939 19.1808 19.1856
labor 1.4878 0.7546 1.0358 0.8476 0.8838
laborshare 0.6368 0.1056 0.8918 1.0718 1.1005
capital 0.5819 . 0.2986 . .
sat-co -0.1989 . . . .
fuel 1.3054 1.0306 1.4952 1.7531 1.7574
fuelshare -0.0543 . . . .
MSPE 14.1204 14.142 14.0495 14.0504 14.0495
MAE 12.9897 13.0329 13.0521 13.0707 13.0695
ACTIVE SET SIZE 7 4 5 4 4
λ 1.8789 0.7946 0.2964 26.4 22.4
d . . . . 0

Table 7 shows that the Ridge regression produces smoothly shrunken coefficients, retaining all pre-
dictors in the model. In contrast, Lasso enforces sparsity by producing smaller coefficient estimates -
evidenced by a lower estimate for labor - and by reducing the active set. Elastic Net strikes a balance
between the behaviors of Ridge and Lasso. The performances of BAR and BALT are very similar; both
methods select four predictors as determined by Lasso. Overall, MSPE and MAE are comparable across
all methods, with BALT achieving the lowest MSPE. These results suggest that broken adaptive methods
(BAR and BALT) can enhance variable selection without compromising predictive performance. Al-
though traditional approaches like Ridge, Elastic Net, and Lasso remain effective, adaptive methods such
as BAR and BALT provide a flexible alternative that better balances model complexity and accuracy.

5.3 Example III: Riboflavin Dataset

In this section, we examine a genomic dataset related to riboflavin (vitamin B2 ) production in Bacillus
subtilis. This data set was initially investigated by Bühlmann [15] and is available through the hdi package
in the R software environment. Further analyses have been conducted by Javanmard and Montanari [16],
Zhang et al. [17], Genç and Özkale [6], among others.

The primary objective of these studies is to identify the genes that contribute to increased riboflavin
production, enabling the creation of higher-yield bacterial strains. The data set consists of 71 observations
and 4088 predictors, each corresponding to the logarithmic expression level of a specific gene. The
response variable represents the logarithm of riboflavin production rates in Bacillus subtilis.

Table 8 summarizes the optimal tuning parameters, prediction errors, and model sparsity for five
regression estimators (Ridge, Lasso, Elastic Net, BAR, and BALT) applied to the riboflavin dataset.
Ridge regression yields the lowest prediction error (MSPE = 0.0566, MAD = 0.0429) but at the expense of
including almost all available predictors (4088 active coefficients), which may compromise interpretability
and increase computational burden in high-dimensional analyses. In contrast, Lasso and Elastic Net
select substantially fewer predictors (52 and 53, respectively); however, they incur an elevated MSPE
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Table 8: Performance metrics for various estimators on
the riboflavin data.

Estimators MSPE MAD ACTIVE SETS λ/d
Ridge 0.0566 0.0429 4088 100
Lasso 0.1440 0.0429 52 0.0223
Elastic-net 0.1441 0.1082 53 0.0279
BAR 0.0688 0.0531 30 0.01
BALT 0.0568 0.0459 49 0.01/-2

(approximately 0.1440) and, in the case of Elastic Net, a higher MAD (0.1082), suggesting potential
sensitivity to outliers or over-penalization.

Adaptive methods show considerable promise: the BAR estimator achieves competitive prediction
performance (MSPE = 0.0688, MAD = 0.0531) using only 30 predictors. In comparison, the BALT
estimator achieves MSPE (0.0568) and MAD (0.0459), similar to Ridge with a more parsimonious model
(49 active predictors). The additional tuning parameter in BALT further enhances its flexibility in
capturing the underlying sparsity.

These findings indicate that, while Ridge regression minimizes the prediction error, its dense model
structure may not be suitable for applications requiring interpretability. Adaptive techniques, particularly
BALT, offer a balanced alternative by maintaining a low prediction error with a markedly reduced active
set, underscoring their potential in high-dimensional biological data analysis.

6 Concluding remarks

Ridge regression is a widely used technique for parameter estimation in linear models, offering improved
stability over ordinary least squares, particularly in multicollinearity. However, Ridge regression cannot
perform variable selection. Recent developments with the introduction of the Broken Adaptive Ridge
(BAR) method have introduced mechanisms enabling shrinkage and variable selection within a Ridge-
type framework. Similarly, the Liu-type estimator has been shown to offer competitive performance
compared to Ridge regression by incorporating a biasing parameter, but fails to achieve sparsity. This
study proposes the Broken Adaptive Liu-Type (BALT) estimator as a theoretically grounded and empiri-
cally validated solution to multicollinearity in multivariate regression models. By employing an adaptive,
eigenstructure-driven shrinkage strategy, BALT effectively balances bias and variance while promoting
sparsity through selective penalization. The proposed method extends the classical Liu-type estima-
tors by introducing a broken adaptive framework, which allows for nuanced control over regularization
intensity across orthogonal subspaces of the design matrix.

Our asymptotic analysis confirms that BALT satisfies both oracle and grouping properties under mild
regularity conditions. These theoretical guarantees are supported by simulation results that demonstrate
its superior performance in estimation precision, variable selection accuracy, and prediction error, relative
to existing methods. The utility of BALT is further illustrated through applications to real datasets
in medical diagnostics, economic modeling, and genomics, where it achieves competitive or improved
predictive accuracy while maintaining model parsimony.

In summary, BALT contributes a flexible and efficient tool to the suite of penalized regression tech-
niques, particularly suited for high-dimensional multicollinear settings. Future work may extend this
framework to generalized linear models, structured sparsity regimes, and Bayesian implementations.
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Appendix: Proofs of the Main Results

To prove Theorems 1, we begin by introducing some convenient notation. Write

θ =

(
α

γ

)
,

where α ∈ Rqn and γ ∈ R pn−qn . Similarly, denote the k-th iterate by

θ̂(k) =

(
α̂(k)

γ̂(k)

)
.

For any candidate θ, define the mapping

f(θ) =
(
ZT Z + λnD(θ) In

)−1(
ZT Z − λn dF (θ)

)
θLS. (A.1)

We shall write

f(θ̃) =

(
α∗(θ̃)

γ∗(θ̃)

)
,

and for brevity set α∗ = α∗(θ), γ∗ = γ∗(θ) where no ambiguity arises.
Next, partition the inverse of the population Fisher information matrix, Σ−1

n , as

Σ−1
n =

(
B11 B12

B21 B22

)
,

with B11 ∈ Rqn×qn . Multiplying (ZTZ)−1(ZTZ + λnD(θ)In) to (A.1) yields

(
α∗ − α0

γ∗

)
+

λn

n

(
B11D1(α)α

∗ +B12D2(γ) γ
∗

B21D1(α)α
∗ +B22D2(γ) γ

∗

)
− λn d

n θ̃j

(
[B11, B12] θ

LS

[B21, B22] θ
LS

)
= (ZTZ)−1ZT ε (A.2)

where
D1(α) = diag

(
α−2
1 , . . . , α−2

qn

)
, D2(γ) = diag

(
γ−2
1 , . . . , γ−2

pn−qn

)
.

The following lemma captures the key bounds on f over suitably small neighborhoods.

Lemma 1. Let {δn} be any sequence of positive reals satisfying δn → ∞ and pnδ
2
n/λn → 0. Define

Hn =
{
θ ∈ Rpn : ∥θ − θ0∥ ≤ δn

√
pn/n

}
, H0

n =
{
α ∈ Rqn : ∥α− θ01∥ ≤ δn

√
pn/n

}
.

Assume conditions (C1)–(C3) hold. Then with probability tending to 1,

1. sup
θ∈Hn

∥γ∗(θ)∥
∥γ∥

<
1

C0
for some constantC0 > 1;

2. f
(
Hn

)
⊆ Hn.

Proof of part (a). Since λn/
√
n → 0 and pnδ

2
n/λn → 0, it follows that δn

√
pn/n → 0. By (C2),

nE
∥∥ (ZTZ)−1ZT ε

∥∥2 = σ2tr(Σ−1
n ) = O(pn),

so E∥θLS − θ0∥ = O(pn/n), and thus ∥θLS − θ0∥ = Op(
√

pn/n). Then from (A.2) we obtain

sup
θ∈Hn

∥∥∥∥∥γ∗ +
λn

n
B12 D1(α)α

∗ +
λn

n
B22 D2(γ) γ

∗ − λn d

n θ̃j

[
B21, B22

]
θLS

∥∥∥∥∥ = Op

(√
pn/n

)
. (A.3)
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Next, since ∥α− θ01∥ ≤ δn
√

pn/n and ∥α∗∥ ≤ ∥θLS∥ = Op(b1n
√
pn), assumptions (C2)–(C3) imply

sup
θ∈Hn

λn

n

∥∥B12 D1(α)α
∗∥∥ ≤ λn

n
∥B12∥ sup

θ∈Hn

∥∥D1(α)α
∗∥∥ ≤

√
2C

λn

n

b1n
b20n

sup
θ∈Hn

∥α∗∥ = Op

(√
pn/n

)
,

(A.4)
where we used ∥B12∥ ≤

√
2C (since ∥B12B21∥−∥B2

11∥ ≤ ∥B2
11+B12B21∥2 ≤ ∥Σ−1

n ∥ ≤ C2). Combining
(A.3) and (A.4) yields

sup
θ∈Hn

∥∥∥γ∗ +
λn

n θ̃2j
B22 D2(γ) γ

∗ − λn d

n θ̃j

[
B21, B22

]
θLS
∥∥∥ = Op

(√
pn/n

)
(A.5)

Note that B22 is positive definite, and by the singular value decomposition, we can write

B22 =

pn−qn∑
i=1

τ2iu2iu
T
2i,

where τ2i and u2i are eigenvalues and eigenvectors of B22. Then, since 1/C < τ2i < C for some constant
C > 1, we have

λn

n
∥B22D2(γ) γ

∗∥ =
λn

n

∥∥∥∥∥
pn−qn∑
i=1

τ2iu2iu
T
2iD2(γ) γ

∗

∥∥∥∥∥
≥ λn

n

(
pn−qn∑
i=1

τ22i∥uT
2iD2(γ) γ

∗∥2
)1/2

≥ 1

C

(
λn

n

)(pn−qn∑
i=1

∥uT
2iD2(γ) γ

∗∥2
)1/2

=
1

C

λn

n
∥D2(γ) γ

∗∥.

This, together with (A.5) and condition (C2) for BALT, implies that with probability tending to 1,

1

C

λn

n
∥D2(γ) γ

∗∥ − ∥γ∗∥ ≤ δn
√

pn/n. (A.6)

Define

dγ∗/γ =

(
γ∗
1

γ1
, . . . ,

γ∗
pn−qn

γpn−qn

)T

.

Because ∥γ∥ ≤ δn
√

pn/n within Hn, we have

1

C

λn

n
∥D2(γ) γ

∗∥ =
1

C

λn

n

(
∥D2(γ)

1/2dγ∗/γ∥
)

≥ 1

C

λn

n

√
n

δn
√
pn

∥dγ∗/γ∥.
(A.7)

Meanwhile, we observe that

∥γ∗∥ = ∥D2(γ)
−1/2dγ∗/γ∥ ≤

δn
√
pn√
n

∥dγ∗/γ∥. (A.8)
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Combining (A.6)–(A.8), we obtain that with probability tending to 1,

∥dγ∗/γ∥ ≤ 1

λn/(pnδ2nC)− 1
<

1

C0
for some constant C0 > 1,

provided that λn/(pnδ
2
n) → ∞.

Furthermore, with probability tending to 1,

∥γ∗∥ ≤ ∥dγ∗/γ∥ · max
1≤j≤pn−qn

|γj | ≤ ∥γ∥∥dγ∗/γ∥ ≤ 1

C0
∥γ∥.

Thus, we have established that ∥γ∗∥ is strictly smaller than ∥γ∥ with high probability, completing the
proof of part (a) for BALT.

We now turn to establishing part (b). First, observe from (A.8) and (A.9) that, as n → ∞,

Pr
(
∥θ∗∥ ≤ δn

√
pn/n

)
→ 1. (A.10)

Using (A.2), it follows that

sup
θ∈Hn

∥∥∥∥∥α∗ − θ01 + λnB11D1(α)α
∗/n) + λnB12D2(γ)γ

∗/n− λn d

n θ̃j

[
B11, B12

]
θLS

∥∥∥∥∥ = Op

(√
pn/n

)
.

(A.11)
Following similar reasoning as in (A.4), we find that

sup
θ∈Hn

∥λnB11D1(α)(α
∗)/n)∥ = op

(√
pn/n

)
. (A.12)

Additionally, with high probability,

sup
θ∈Hn

∥λnB12D2(γ)γ
∗/n∥ ≤ λn

n
sup
θ∈Hn

∥D2(γ)∥ · ∥B12∥ ≤ 2
√
2C2δn

√
pn/n, (A.13)

where the final inequality makes use of (A.6), (A.10), and the bound ∥B12∥ ≤
√
2C.

Therefore, combining (A.11)–(A.13), we have with high probability:

∥θ∗ − θ01∥ ≤
(
2
√
2C2 + 1

)
δnn

−1/2√pn. (A.14)

Since δn
√
pn/

√
n → 0 as n → ∞, it follows that

Pr(θ∗ ∈ Hn1) → 1. (A.15)

Putting together results (A.10) and (A.15) completes the justification for part (b).
Lemma 2. Assume conditions (C1)–(C3) hold. For any qn-dimensional vector an with ∥an∥ ≤ 1,

define s2n = σ2aT
nΣn1an as in Theorem 1. Let

f(α) =
(
ZT

1 Z1 + λnD1(α))
)−1

(
Z⊤

1 Z1 − λnddiag(θ̃
−1
1 , . . . , θ̃−1

qn )
)
(ZT

1 Z1)
−1ZT

1 y, (A.16)

Then, as n → ∞:

(a) The function f is a contraction on the set Bn =
{
α ∈ Rqn : ∥α− θ0∥ ≤ δn, δn = o(

√
pn/n)

}
.
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(b) Let α̂◦ = f(α̂) denote the unique fixed point of f . Then,

√
n

sn
aT
n (α̂

◦ − θ0) −→ N (0, 1).

Proof. Rewrite f(α) as:

f(α)− θ01 + λnΣ
−1
n1D1(α)f(α)/n− λnd

nθ̃
Σ−1

n1 θ
LS = (ZT

1 Z1)
−1ZT

1 ε.

Thus,

sup
α∈Bn

∥∥∥∥f(α)− θ01 + λnΣ
−1
n1D1(α)f(α)/n− λnd

nθ̃
Σ−1

n1 θ
LS

∥∥∥∥ = Op(
√

qn/n). (A.17)

Similar to (A.4), it can be shown that

sup
α∈Bn

∥∥∥∥λnΣ
−1
n1D1(α)f(α)/n− λnd

nθ̃
Σ−1

n1 θ
LS

∥∥∥∥ = Op(
√

qn/n). (A.18)

It follows from (A.17) and (A.18) that

sup
α∈Bn

∥f(α)− θ01∥ ≤ δn
√

qn/n, (A.19)

where δn is a sequence of real numbers satisfying δn → ∞ and δn
√

qn/n → 0. This implies that, as
n → ∞,

Pr(f(α) ∈ Bn) → 1.

In other words, f is a mapping from the region Bn to itself.

Rewrite (A.16) as (ZT
1 Z1 + λnD1(α))f(α) =

(
Z⊤

1 Z1 − λnddiag(θ̃
−1
1 , . . . , θ̃−1

qn )
)
(ZT

1 Z1)
−1XT

1 y and

then differentiate it with respect to α, we have

{Σn1 + λnD1(α)/n}
∂f(α)

∂αT
+ (λn/n)× diag

{
−2f(α)/α2

j

}
= 0,

where f(α) = ∂f(α)/∂αT and diag
{
−2f(α)/α2

j

}
= diag

(
−2f1(α)/α

2
1, . . . ,−2fqn(α)/α

2
qn

)
. This,

together with the assumption λn/
√
n = on(1), implies that

sup
α∈Bn

∥Σn1 + λnD1(α)/n∥ ·
∥∥∥∥∂f(α)∂αT

∥∥∥∥ ≤ 2λn

n
sup
α∈Bn

∥∥diag{fj(α)/α2
j

}∥∥ = op(1). (A.20)

Note that Σn1 is positive definite. Write Σn1 =
∑qn

i=1 τ1iu1iu
T
1i, where τ1i and u1i are eigenvalues and

eigenvectors of Σn1. Then, by (C2), τi ∈ (1/C,C) for all i and

∥Σn1f(α)∥ = sup
∥x∥=1

∥Σn1f(α)x∥ = sup
∥x∥=1

∥∥∥∥∥
qn∑
i=1

λ1iu1iu
T
1if(α)x

∥∥∥∥∥
≤ sup

∥x∥=1

(
qn∑
i=1

λ2
1i

∥∥uT
1if(α)x

∥∥2)1/2

≤ sup
∥x∥=1

1

C

(
qn∑
i=1

∥∥uT
1if(α)x

∥∥2)1/2

(A.21)

= sup
∥x∥=1

1

C
∥f(α)x∥ =

1

C
∥f(α)∥.

Therefore, it follows from α ∈ Bn, (A.21), and (C2) that

∥Σn1 + λnD1(α)/n∥ ·
∥∥∥∥∂f(α)∂αT

∥∥∥∥ ≥ ∥Σn1f(α)∥ − ∥λnD1(α)f(α)/n∥ ≥ 1

C
∥f(α)∥ − λn

n
α−2
min∥f(α)∥.
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This, together with (A.20) and (C2), implies that

sup
α∈Bn

∥f(α)∥ = op(1). (A.22)

Finally, the conclusion in part (a) follows from (A.19) and (A.22).
To demonstrate part (b), consider the following decomposition:

n1/2S−1
n an(α̂

◦ − θ0) = n1/2S−1
n a⊤n

[
(Σn1 + λnD1(α̂

◦)/n)
−1

M − Iqn

]
θ01

+ n1/2S−1
n a⊤n (Σn1 + λnD(α̂◦)/n)

−1
MΣn1X

⊤
1 ε ≡ I1 + I2. (A.23)

Using the first-order resolvent expansion, namely

(H+∆)−1 = H−1 −H−1∆(H+∆)−1,

we rewrite the first term I1 as:

I1 = −S−1
n a⊤nΣ

−1
n

1√
n
D1(α̂

◦) (Σn + λnD1(α̂
◦)/n))

−1
MΣn1θ01.

Assuming conditions (C2) and (C3), we can bound the norm of I1 as:

∥I1∥ ≤ λn√
n
s−1
n b−2

0n

∥∥Σ−1
n Mθ0

∥∥ = Op

(
λnb1n
b20n

√
qn
n

)
→ 0. (A.24)

Next, express Z⊤
1 = (w̃1, . . . , w̃n), and again use the resolvent expansion to show that:

I2 =
S−1
n√
n

n∑
i=1

a⊤nMΣ−1
n w̃iεi +Op(1), (A.25)

which converges in distribution to a normal distribution N (0, 1), as stated by the Lindeberg–Feller
Central Limit Theorem.

Combining equations (A.23), (A.24), and (A.25), we complete the proof of part (b).

Proof of Theorem 1. Note that for the initial Liu-type estimator estimator θ̂(0) defined by θ̂(0) = (ZTZ+
λnIn)

−1(ZTZ − λnd) θ
LS, we have

θ̂(0) − θ0 =
{
(Σn + ξnIpn

/n)−1M − Ipn

}
β0 + (Σn + ξnIpn

/n)−1MΣ−1
n

1

n
XT ε ≡ T1 + T2.

where M = (Σn − ξndIpn
/n) By the first-order resolvent expansion, ξn/

√
n → 0, and dn = O(1),

∥T1∥ =
∥∥−ξn

dn

n (Σn + ξn
n I)β0

∥∥ ≤ C
ξndn
n

∥β0∥ = Op(
√

pn/n), ∥T2∥ = Op(
√

pn/n),

so that ∥θ̂(0) − θ0∥ = Op(
√

pn/n).
This, combined with part (a) of Lemma 1, implies that

Pr
(
lim
k→∞

γ̂(k) = 0
)

→ 1. (A.26)

Hence, to prove part (i) of Theorem 1, it suffices to show that

Pr
(
lim
k→∞

∥α̂(k) − α∗∥ = 0
)

→ 1, (A.27)
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where α∗ is the fixed point of f(α) defined in Lemma 2(b). Define γ∗ = 0 if γ = 0. It is easy to see from
(A.2) that for any α ∈ Bn

lim
γ→0

γ∗(α, γ) = 0. (A.28)

For any α ∈ Bn,

lim
γ→0

α∗(α, γ) =
{
ZT
1 Z1 + λnD1(α)

}−1
MZT

1 y = f(α). (A.29)

Therefore, g is continuous and thus uniformly continuous on the compact set θ ∈ Hn. This, together
with (A.26) and (A.29), implies that, as k → ∞,

ηk ≡ sup
α∈Bn

∥∥f(α)− α∗(α, γ̂(k))
∥∥ → 0 (A.30)

with probability tending to 1. Note that

∥α̂(k+1) − α∗∥ =
∥∥α∗(θ̂(k))− α∗∥∥ ≤

∥∥α∗(θ̂(k))− f(α̂(k))
∥∥+ ∥∥f(α̂(k))− α∗∥∥ ≤ ηk + 1

C ∥α̂(k) − α∗∥.

Let ak = ∥α̂(k)−α∗∥ for every integer k ≥ 0. From (A.30) we can inductively show that with probability
tending to 1, for any ϵ > 0 there exists N such that for every integer k > N ,

ak+1 ≤ a1 + η1 + · · ·+ ηN
C k−N

+
1− (1/C) k−N

1− 1/C
ϵ,

and the right-hand term tends to 0 as k → ∞. This proves (A.27).
Therefore, it follows immediately from (A.26) and (A.27) that with probability tending to 1,

lim
k→∞

θ(k) = lim
k→∞

(α̂(k)T , γ̂(k)T )T = (α∗T , 0T )T ,

which completes the proof of part (i). This, in addition to part (b) of Lemma 2, proves part (ii) of
Theorem 1.
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[15] Bühlmann P, Kalisch M, Meier L, High-dimensional statistics with a view toward applications in
biology, Annu. Rev. Stat. Appl., 1(1):255–278, 2014.

[16] Javanmard A, Montanari A, Confidence intervals and hypothesis testing for high-dimensional
regression, J. Mach. Learn. Res., 15(1):2869–2909, 2014.

[17] Zhang C, Wu Y, Zhu M, Pruning variable selection ensembles, Stat. Anal. Data Min.: The ASA
Data Sci. J., 12(3):168–184, 2019.

[18] Goeman, J. J., Meijer, R. J., & Chaturvedi, N. Penalized estimation methods for zero-inflated
regression models. Statistical Modelling, 14(3), 215-237, 2014.

[19] Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1), 55-67, 1970.

20



[20] Kibria, B. M. G. Performance of some new ridge regression estimators. Communications in Statistics
- Simulation and Computation, 32(2), 419–435, 2003.

[21] Lee, A. H., & Silvapulle, M. J. Ridge estimation in logistic regression. Communications in Statistics-
Simulation and Computation, 17(4), 1231-1257, 1988.

[22] Le Cessie, S., & Van Houwelingen, J. C. Ridge estimators in logistic regression. Applied Statistics,
41(1), 191-201, 1992.

[23] Liu, K. A new class of biased estimate in linear regression. Communications in Statistics - Theory
and Methods, 22(2), 393–402, 1993.

[24] Liu, K. Using Liu-type estimator to combat collinearity. Communications in Statistics—Theory and
Methods, 32(5), 1009–1020, 2003.
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